\(3^{2^{1930}}\)cho 7

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn kham khảo link này nhé.

Câu hỏi của Nguyễn Văn Phan - Toán lớp 6 - Học toán với OnlineMath

ta có 3^10=4 (mod7) 3^20=2 (mod7) 3^50=3^20.3^20.3^10=2.2.4=2 (mod 2) 3^100=3^50.3^50=2.2=4 (mod 7) vậy 3^100 chia cho 7 dư 4

20 tháng 3 2019

chia 7 du 4

10 tháng 1 2018

a, Đặt : A \(=2^{9^{1945}}\)

Ta có :

\(2^3\equiv1\left(mod7\right)\); \(9\equiv0\left(mod3\right)\Rightarrow9^{1945}\equiv0\left(mod3\right)\)

Đặt : \(9^{1945}\)=3k ( k \(\in N\)

\(\Rightarrow A=2^{3k}=\left(2^3\right)^k=8^k\equiv1\left(mod7\right)\)

Vậy : A chia 7 dư 1

b, Đặt \(B=3^{2^{1930}}\)

Ta có : \(3^3\equiv-1\left(mod7\right);8\equiv-1\left(mod3\right)\)

\(B=\left(2^3\right)^{623}.2=2^{1930}\equiv-1.2\equiv-2\left(mod3\right)\equiv1\left(mod3\right)\)

=> \(2^{1930}-1=3k\left(k=2k+1\right)\Rightarrow3^{2^{1930}-1}=3^{3k}=27^k\equiv-1\left(mod7\right)\)

B=\(3.3^{2^{1930}-1}\equiv-1.3\left(mod7\right)\equiv4\left(mod7\right)\)

Vậy : B chia 7 dư 4

5 tháng 8 2018

c)

Gọi đa thức \(ax^3+bx^2+c\)\(f\left(x\right)\).

Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:

\(f\left(-2\right)=-8a+4b+c=0\)(1)

Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:

\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)

Nghiệm của \(x^2-1\)\(1\)\(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :

\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)

Từ (1), (2) và (3), ta có HPT:

\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)

Vậy a=1;b=1 và c=4

5 tháng 8 2018

b)

Gọi đa thức \(x^3+ax+b\)\(f\left(x\right)\)

Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.

Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.

Theo bài ra ta có PT:

\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)

Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Vậy a=-10, b=-2

17 tháng 9 2016

dễ mà bài này quá dễ

17 tháng 9 2016

Phan Văn Hiếu:làm đi trước khi nói

1 tháng 11 2019

Ta có:

\(x^3+ax+b=\left(x+1\right)\cdot P\left(x\right)+7\)

\(x^3+ax+b=\left(x-3\right)\cdot Q\left(x\right)+5\)

Theo Bezut ta có:

Với \(x=-1\Rightarrow b-a-1=7\)

Với \(x=3\Rightarrow3a+b+27=5\)

\(\Rightarrow4a+28=-2\Rightarrow4a=26\Rightarrow a=\frac{13}{2}\Rightarrow b=\frac{29}{2}\)