Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
270 + 370 = (22)35 + (32)35 = 435 + 935 = (4+9)35 = 1335 chia hết cho 13.
Vậy số dư của phép cộng trên cho 13 là 0.
Câu 1:
Ta có:
\(2^6\equiv-1\left(mod13\right)\Rightarrow2^{70}\equiv2^4.-1\left(mod13\right)\)
\(3^3\equiv1\left(mod13\right)\Rightarrow3^{70}\equiv3\left(mod13\right)\)
\(\Rightarrow2^{70}+3^{70}\equiv13\left(mod13\right)\equiv0\left(mod13\right)⋮13\left(dpcm\right)\)
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
Ta có:370=(37).10=2110 chia hết cho 7
570=(57).10=3510 chia hết cho 7
=>370+570 chia hết cho 7
Ta có:32=9 đồng dư với 1(mod 5)
=>(32)35=370 đồng dư với 135(mod 5)
=>370 đồng dư với 1(mod5)
Vậy 370 chia 5 dư 1
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
tưởng giỏi lắm chứ
Số dư bằng 0 ...