K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Ta có : \(3^{2000}=3^{1998}.3^2=\left(3^6\right)^{333}.9=729^{333}.9=\left(7.104+1\right)^{333}.9\)

Ta có : \(\left(7.104+1\right)^{333}\equiv1\left(mod7\right)\)\(\Leftrightarrow\left(7.104+1\right)^{333}.9\equiv9\left(mod7\right)\)

Mà \(9\equiv2\left(mod7\right)\) nên \(\left(7.104+1\right)^{333}.9\equiv2\left(mod7\right)\) hay \(3^{2000}\equiv2\left(mod7\right)\)

Vậy \(3^{2000}\) chia 7 dư 2

31 tháng 5 2016

số dư là 2

11 tháng 8 2021

gọi số cần tìm là x 

vì x : 3  dư 2 => x + 1 ⋮ 3 

    x : 7 dư 6 => x + 1 ⋮ 7

    x : 25 dư 24 => x + 1 ⋮ 24

=> x + 1 thuộc BC(3;7;24) 

có 3 = 3 ; 7 = 7; 24 = 2^2.3

=> BCNN(3;7;24) = 3.7.2^2 = 84

=> x + 1 thuộc B(84)

=> x + 1 thuộc {0;84;168; ....}

=> x thuộc {-1; 83; 167;. ...}

mà x thuộc N và x nhỏ nhất

=> x = 83

vậy số cần tìm là 83

11 tháng 8 2021

chết mình ghi lộn cái xong tính lộn luôn

24 = 2^3.3

nên BCNN = 2^3.3.7 = 168 nhé :((

AH
Akai Haruma
Giáo viên
6 tháng 8 2023

Lời giải:

Gọi tổng số học sinh khối 7 là $a$ (em).

Theo bài ra ta có: $a-2\vdots 3; a-3\vdots 4; a-4\vdots 5; a-5\vdots 6, a-9\vdots 10$

$\Rightarrow a+1\vdots 3,4,5,6,10$

$\Rightarrow a+1 =BC(3,4,5,6,10)$

$\Rightarrow a+1\vdots BCNN(3,4,5,6,10)$

$\Rightarrow a+1\vdots 60$

$\Rightarrow a+1\in\left\{0; 60; 120; 180; 240; 300;...\right\}$

Mà $a$ trong khoảng từ 235 đến 250 nên $a=240$ (em)

Gọi số học sinh khối 7 là: a

Theo đề bài,

-biết số học sinh chia cho 3 dư 2

=>(a+1)\(⋮\)3

-a chia 4 dư 3

=>(a+1)\(⋮4\)

-a chia cho 5 dư 4

=>(a+1)\(⋮5\)

-a chia cho 6 dư 5

=>(a+1)\(⋮6\)

-a chia 10 dư 9

=>(a+1)\(⋮10\)

Từ đó =>(a+1)\(\in BC\left(3;4;5;6;10\right)\) (và \(236\le a+1\le251\))

BCNN(3;4;5;6;10)=23.3.5=120

<=> BCNN(3;4;5;6;10)=B(120)={0;120;240;360;480;...}

Mà \(236\le a+1\le251\)

=>a+1=240

=>a=240-1

=>a=239

Vậy số học sinh khối 7 ngôi trường đó là 239

28 tháng 8 2015

Số tự nhiên là A, ta có: 
A = 7m + 5 
A = 13n + 4 
=> 
A + 9 = 7m + 14 = 7(m + 2) 
A + 9 = 13n + 13 = 13(n+1) 
vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k 
=> A = 91k - 9 = 91(k-1) + 82 
vậy A chia cho 91 dư -9 (hoặc 82)

12 tháng 4 2019

Số tự nhiên là A, ta có: 

A = 7m + 5 

A = 13n + 4 

=> A + 9 = 7m + 14 = 7(m + 2) 

=> A + 9 = 13n + 13 = 13(n+1) 

vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k 

=> A = 91k - 9 = 91(k-1) + 82 

vậy A chia cho 91 dư -9 (hoặc 82)

30 tháng 6 2015

101 nha pn ( kết bạn với tớ nha )

25 tháng 7 2016

 Bài làm:
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> ﴾x ‐ 1﴿ chia hết 2
﴾x ‐ 2﴿ chia hết 3
﴾x ‐ 3﴿ chia hết 4
﴾x ‐ 4﴿ chia hết 5
﴾x ‐ 5﴿ chia hết 6
﴾x ‐ 6﴿ chia hết
=> ﴾x + 1﴿ chia hết cho cả 2, 3, 4, 5, 6, 7
=> ﴾x + 1﴿ là BC﴾2;3;4;5;6;7﴿
Mà x nhỏ nhất
=>﴾ x+ 1﴿ là BCNN﴾2;3;4;5;6;7﴿ = 5.12.7 = 420 => x = 419

18 tháng 11 2016

x=419

13 tháng 1 2016

http://olm.vn/hoi-dap/question/144468.html

Ban vao day nha

13 tháng 1 2016

666666666666666666666666666666666666666666666666666666