Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)
Lời giải:
$(x+1)(x+3)(x+5)(x+7)=[(x+1)(x+7)][(x+3)(x+5)]$
$=(x^2+8x+7)(x^2+8x+15)$
$=[(x^2+8x+12)-5][(x^2+8x+12)+3]$
$=(x^2+8x+12)^2+3(x^2+8x+12)-5(x^2+8x+12)-15$
$=(x^2+8x+12)^2-2(x^2+8x+12)-15$
$\Rightarrow (x+1)(x+3)(x+5)(x+7)$ chia $x^2+8x+12$ dư $-15$
a) Ta có :
\(7^{8^9}=7^{2^{27}}=7^{4^{13}}.7\)
\(7^4=2401\text{≡}1\left(mod15\right)\)
\(\Rightarrow7^{4^{13}}.7\text{≡}1^{13}.7\left(mod15\right)\)
\(\Leftrightarrow7^{8^9}\text{≡}1.7\text{≡}7\left(mod15\right)\)
Vậy ...
b) Để tớ hỏi cô tớ chút nhé :(
-Dung:để t xem lại cách làm của c câu a) đã,cô t bảo bài đó dài,phải xét tới 9 lần 78 đồng dư với ..(mod15) cơ