Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)
Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)
Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)
Ta cũng có:
\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)
Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)
Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\) và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)
Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5
Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)
Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)
Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)
\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)
Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)
Ta cũng có :
\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)
Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)
Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)
Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
1. \(x^3+3x=x^2y+2y+5\)
\(\Leftrightarrow x^3+3x-x^2y-2y-5=0\)
\(\Leftrightarrow(x^3+2x)-(x^2y+2y)+x-5=0\)
\(\Leftrightarrow x(x^2+2)-y(x^2+2)=5-x\)
\(\Leftrightarrow(x^2+2)\left(x-y\right)=5-x\)
\(\Leftrightarrow\left(x-y\right)=\dfrac{5-x}{2^2+2}\)
Vì x,y nguyên nên x-y nguyên
\(\Rightarrow5-x⋮x^2+2\)
\(\Rightarrow x-5⋮x^2+2\)
\(\Rightarrow(x-5)\left(x+5\right)⋮x^2+2\)
\(\Rightarrow x^2-25⋮x^2+2\)
\(\Rightarrow x^2+2-27⋮x^2+2\)
\(\Rightarrow27⋮x^2+2\)
=> \(x^2+2\) thuộc tập hợp ước dương của 27 ( vì \(x^2+2>0\))
\(\Rightarrow x^2+2\in\left\{1;3;9;27\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;7;25\right\}\)
Mà \(x^{ }\) là số nguyên
=> \(x^2\in\left\{1;25\right\}\)
=> \(x\in\left\{-5;-1;1;5\right\}\)
Ta có bảng:
x | -5 | -1 | 1 | 5 |
y | \(\dfrac{145}{27}\) | -3 | \(\dfrac{-1}{3}\) | 5 |
Nhận xét | Loại | Chọn | Loại | Chọn |
Vậy ...
Còn phần 2 bạn xem câu hỏi Le chi , mình đã trả lời giúp bạn ấy rồi
cách 1 bn đặt phép tính chia ra rùi làm còn cách 2 thì để mk suy nghĩ!!!
45435656457567565687697634534645645767567567876878365546454545
à quên cách 2 ko dùng cho phép chia có dư được hì!!
456547657567557876897345345345346546456465465756
Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)
Giả sử \(f\left(x\right)\)chia hết cho x-1
\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)
\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)
\(=0\)
\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)
Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)
\(\Rightarrow\)mâu thuẫn
\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )
Bài 2:
x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2
Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)
\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)
Đồng nhất hệ số 2 vế ta được:
\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)
Vậy ...
Bài 3:
Vì \(P\left(x\right)\)chia \(x+3\)dư 1
\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)
\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)
\(=1\left(1\right)\)
Vì \(P\left(x\right)\)chia \(x-4\)dư 8
\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)
\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)
\(=8\left(2\right)\)
Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư
\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)
Thay (4) vào (3) ta được:
\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)
\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)