Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25 = 32 chia 31 dư 1 => 25.403 = 22015 chia 31 dư 1
=> 22015 + 13 chia 31 dư 14
2135 đồng dư với 3 (mod13)
=> 213597 đồng dư với 397 (mod13)
33 = 27
đồng dư với 1 (mod13)
=> (33)32.3 đồng dư với 132.3= 3 (mod13)
=> 213597 đồng dư với 3
=> 213597 chia hết cho 13
Vậy: 213597 chia hết cho 13
S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )
= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )
= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )
= 1 + 3.13 + 34 .13 + .... + 398.13
= 1 + 13 ( 3 + 34 + ... + 398 )
Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1
hay S chia 13 dư 1
Sao cô giáo minh lại bảo số dư là 4 cơ:
ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)
S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))
=4.13.(3\(^2\)+...+3\(^{98}\))
Vậy S chia cho 13 dư4
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}