K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

Cho a là số học sinh giỏi
       b là số học sinh khá
Theo đề bài ta có:  b= 3a/2   (1)
                            (b-6)= (a+8)/2 (2)
từ (1) và (2) => 3a/2 -6 = (a+8)/2 => (3a-12)/2 = (a+8)/2 => 3a-12=a+8 => 2a = 20 => a =10
  

17 tháng 4 2018

a. Phân số đó là 1/5 

b. 28 và 40 

c. 30 và 10

17 tháng 4 2018

Giaỉ thích gìum  với

3 tháng 3 2019

Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Ta có:
a = 3b (1)
Nếu đổi chỗ hai chữ số ta được số mới là ba
Vì số mới nhỏ hơn số ban đầu 18 đơn vị
=> ab - ba = 18
=> 10a + b - 10b - a = 18
=> 9a - 9b = 18
=> a - b = 2 (2)
Từ (1) và (2) => a= 3; b = 1
Số cần tìm là 31

 Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x 
Số ban đầu có dạng 10.3x + x = 31x 
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x 
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK) 
\(\Rightarrow\)chữ số hàng chục là 3. Vậy số cần tìm là 31.

7 tháng 7 2018

Gọi 3 số tự nhiên liên tiếp là : \(x;x+1;x+2\left(x\in N\right)\)

Theo bài ra ta có : 

\(\left(x+1\right)\left(x+2\right)-x\left(x+1\right)=140\)

\(\Rightarrow x^2+x+2x+2-x^2-x=140\)

\(\Rightarrow2x+2=140\)

\(\Rightarrow2\left(x+1\right)=140\)

\(\Rightarrow x+1=70\)

\(\Rightarrow x=69\)

\(\Rightarrow\hept{\begin{cases}x+1=70\\x+2=71\end{cases}}\)

Vậy 3 số cần tìm là : 69 ; 70 ; 71

28 tháng 12 2015

1,Ta có

3x+7y=24

<=>3x=24-7y

Vì x là số tự nhiên

=>\(24-7y\ge0\)

<=>\(7y\le24\)

<=>\(y<4\) mà y là số tự nhiên

=>\(y=\left\{0;1;2;3\right\}\)

=>\(x=\left\{....\right\}\)

b,\(x^2-4x+2y-xy+9=0\)

<=>\(\left(x^2-4x+4\right)-y\left(x-2\right)+5=0\)

<=>\(\left(x-2\right)^2-y\left(x-2\right)=-5\)

<=>\(\left(x-2\right)\left(x-2-y\right)=5\)

Đến đây giải theo pp pt nghiệm nguyên.

Nếu mình làm đúng thì tick nha bạn,cảm ơn.

tick tui làm tiếp cho nha.

28 tháng 12 2015

dễ tích đi mk làm cho

15 tháng 8 2019

Thực hiện phép chia ta có:

Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)

\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)

=> \(4x-1⋮x^2+3\) (1)

=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)

Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)

=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)

=> \(-x-12⋮x^2+3\)

=> \(x+12⋮x^2+3\)

=> \(4x+48⋮x^2+3\) (2)

Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)

=> \(49⋮x^2+3\)

=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x

=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)

Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn

Vậy x=2

15 tháng 8 2019

Em cảm ơn cô

25 tháng 4 2018

Gọi số học sinh giỏi toán lớp 8 và lớp 9 lần lượt là a ,b ( 0<a,b<30)

THeo bài ra ta có : số học sinh giỏi khối 8 và 9 là 30 học sinh nên ta có phương trình :a+b=30 (1) 

1/3 số học sinh giỏi khối 9 bằng 50% số học sinh giỏi khoois nên ta có phương trình : 1/3b=50%a \(\Leftrightarrow\)1/3b-1/2a=0 (2)

Từ (1) và (2) ta có hệ phương trình :\(\hept{\begin{cases}a+b=30\\\frac{1}{3}b-\frac{1}{2}a=0\end{cases}\Leftrightarrow\hept{\begin{cases}b=18\\a=12\end{cases}}}\)

vạy số học sinh giỏi lớp 9 là 18 học sinh

số học sinh giỏi khối 8 là 12 học sinh

25 tháng 4 2018

4 ) ta có: \(m< n\Leftrightarrow m-2< n-2\Leftrightarrow4\left(m-2\right)< 4\left(n-2\right)\)2)