Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Đặt Q(x)=0
=>-2x=-8
hay x=4
b: Đặt P(x)=0
=>(x-2)*(x+2)=0
=>x=2 hoặc x=-2
c: Vì \(x^2+2019>=2019>0\forall x\)
nên G(x) vô nghiệm
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
A=\(\frac{3.\left(x-2\right)-7}{x-2}=1-\frac{7}{x-2}\)
Để Amin \(\Rightarrow\)\(1-\frac{7}{x-2}\)min \(\Rightarrow\)\(\frac{-7}{x-2}\)min \(\Rightarrow x-2m\text{ax}\)
Xét x-2<0
A<1 \(\Rightarrow\)\(\frac{-7}{x-2}\) lớn nhất (1)
Xét x-2>0
A<1 \(\Rightarrow x-2nn\Rightarrow x-2=1\Rightarrow x=3\)(2)
từ 1 và 2 suy ra Min A=-4 khi x=3
\(\left|x-3\right|\ge0\)
\(\left|x+4\right|\ge0\)
\(\Rightarrow B\ge0\)
Dấu = xảy ra khi \(\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)
Vậy.....
Khuyển Dạ Xoa b) bạn sai rồi,thay x = 3 hoặc x = -4 xem có ra 0 hay không?
\(B=\left|x-3\right|+\left|x+4\right|=\left|3-x\right|+\left|x+4\right|\ge\left|3-x+x+4\right|=7\)
Dấu "=" xảy ra khi \(\left(3-x\right)\left(x+4\right)\ge0\Leftrightarrow\left(x-3\right)\left(x+4\right)\le0\Leftrightarrow-4\le x\le3\)
Vậy ...
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
Ta có: \(A=|x-2|+|x-13|\)
\(=|x-2|+|13-x|\ge|x-2+13-x|\)
Hay \(A\ge11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right).\left(13-x\right)\ge0\)
Xảy ra 2 TH là cả hai số x-2 và 13-x lớn hơn hoặc bằng 0 và TH2 là nhỏ hơn 0.
Tìm nốt x trong khoảng Mà nó là SCp rồi chắt lọc ra