K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=\(\frac{3.\left(x-2\right)-7}{x-2}=1-\frac{7}{x-2}\)

Để Amin \(\Rightarrow\)\(1-\frac{7}{x-2}\)min \(\Rightarrow\)\(\frac{-7}{x-2}\)min \(\Rightarrow x-2m\text{ax}\)

Xét x-2<0 

A<1 \(\Rightarrow\)\(\frac{-7}{x-2}\) lớn nhất (1) 

Xét x-2>0

A<1 \(\Rightarrow x-2nn\Rightarrow x-2=1\Rightarrow x=3\)(2)

từ 1 và 2 suy ra Min A=-4 khi x=3

\(\left|x-3\right|\ge0\)

\(\left|x+4\right|\ge0\)

\(\Rightarrow B\ge0\)

Dấu = xảy ra khi \(\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)

Vậy.....

15 tháng 4 2019

Khuyển Dạ Xoa  b) bạn sai rồi,thay x = 3 hoặc x = -4 xem có ra 0 hay không?

\(B=\left|x-3\right|+\left|x+4\right|=\left|3-x\right|+\left|x+4\right|\ge\left|3-x+x+4\right|=7\)

Dấu "=" xảy ra khi \(\left(3-x\right)\left(x+4\right)\ge0\Leftrightarrow\left(x-3\right)\left(x+4\right)\le0\Leftrightarrow-4\le x\le3\)

Vậy ...

nhanh lên các bạn

31 tháng 12 2015

1/  196

2/  5/4

3/  1/3

 

3 tháng 1 2019

A=3x-17/4-x

=>(-1)A=17-3x/4-x

=>(-1)A=12-3x+5/4-x

=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)

Để A có GTNN=>-3-(5/4-x) có GTNN 

=>5/4-x có GTLN

=>4-x có GTNN =>=>4-x=-5=>x=9

=>A=3.9-17/4-9

=>A=10/-5

=>A=-2

Vậy..........

3 tháng 1 2019

GTNN là gì vậy

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

9 tháng 7 2016

\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)

\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)

Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)

Vậy minB(x)=-65/4 khi x=5/2

\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)

\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)

\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)

\(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)

Dấu  "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy maxC(x)=1/4 khi x=-1/2

9 tháng 7 2016

\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)

\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)

\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)

\(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x

=>A(x) vô nghiệm (đpcm)

10 tháng 3 2022

A= 3x2 - 2x + 3

= 3(x2- 2/3x + 1/9 ) + 8/3

= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x

dấu ''='' xảy ra <=> x = 1/3

/HT\

10 tháng 3 2022

Nhầm đề rồi mấy bạn trả lời

Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi

HT