Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3
A = 1.2.3...n + 2024
Nếu n = 1 thì A = 1 + 2024
A = 2025
A = \(45^2\) (thỏa mãn)
Nếu n = 2 thì A = 1.2 + 2024
A = 2 + 2024
A = 2026
2026 : 8 = 253 dư 2 loại vì số chính phương chia 8 chỉ có thể dư 1 hoặc 4
Nếu n ≥ 3 thì A = 1.2.3..n + 2024
1.2.3...n ⋮ 3; 2024 : 3 = 674 dư 2
⇒ A ⋮ 3 dư 2 (loại vì số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)
Vậy n = 1 là giá trị duy nhất thỏa mãn đề bài.

10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

Gọi số cân tìm là là abcde , ta có :
abcde2=2abcde.3, phân tích gọi số cần tìm là abcde,ta có: abcde2= 2abcde x 3
,phân tích cấu tạo số ra ta dc: 100000a+10000b+1000c+100d+10e+2=600000+30000a+3000b+300c+30d+3e
, rút gọn ta được: 70000a+7000b+700c+70d+7e +2 = 600000
nên :70000a+7000b+700c+70d+7e =599998;
suy ra 7(10000a+1000b+100c+10b+c)=599998
nên 7abcde=599998: suy ra abcde=85714,
nha bạn chúc bạn học tốt nha
Số chính phương có 5 chữ số trong đó chỉ có một chữ sỗ 5, một chữ số bảy và ba chữ số còn lại giống nhau: 27225
MÌNH CŨNG GIỐNG NGUYỄN TRƯƠNG NAM