Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
Ta có \(\overline{abc}=\overline{bac}+\overline{cab}\) nên \(a>b,a>c\)
Và \(100a+10b+c=100b+10a+c+100c+10a+b\)
\(\Leftrightarrow80a=91b+100c\)
Do \(80a⋮4;100c⋮4\Rightarrow91b⋮4\Rightarrow b⋮4\)
Vậy \(b\in\left\{4;8\right\}\)
Với b = 4, ta có \(80a=364+100c\Leftrightarrow20a=91+25b\)
Vô lý vì \(20a⋮5\) nhưng \(91+25b⋮̸5\)
Với b = 8, ta có \(80a=91.8+100c\Rightarrow20a=182+25c\)
Vô lý vì \(20a⋮5\) nhưng \(182+25b⋮̸5\)
Vậy không có số nào thỏa mãn điều kiện trên.
\(0,abc=\frac{1}{a+b+c}\) = \(\frac{abc}{1000}=\frac{1}{a+b+c}\) = \(\frac{abc}{1000}=\frac{abc}{abcX\left(a+b+c\right)}\)
Vậy : 1000 = abc x ( a+b+c )
ta có : 1000 = 500x2 100=250x4
1000=200x5 1000=125x8 1000=100x10
vì a,b,c khác nhau và khác 0 nên ta chỉ xét trường hợp:
1000=125x8
ta có : abc x ( a+b+c ) = 125x8
chọn abc = 125 ; a+b+c = 8
Vậy: a=1 ; b=2 ; c=5
thay vào đề bài ta được :
\(0,125=\frac{1}{1+2+5}\)
abc chia hết cho 45 nên abc chia hết cho 5 và 9 nên c=0 hoặc 5 mà c khác 0 nên c=5
ta có:
ab5-5ba=396
ta viết lại biểu thức như sau:
396+5ba =ab5
6+a tận cùng là 5 nên a=9
nên ta lại có
abc=9b5 chia hết cho 9 và 5
nên 9+b+5 chia hết cho 9
nên b=4
suy ra abc=945
Đ/S:945
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
Vì : \(\overline{abc}⋮a,b,c\) . Mà : a,b,c là chữ số khác nhau và là số nguyên tố
=> a,b,c phải là các số nguyên tố có 1 chữ số .
=> a,b,c \(\in\) { 2;3;5;7 }
Vì : \(\overline{abc}\) \(⋮\)2 và cho 5 => c = 0 mà c phải là số nguyên tố ( Vô lý )
=> a,b,c \(\in\) { 2;3;7 } và \(\in\) { 3;5;7 }
Ta xét hai trường hợp :
+) Nếu a,b,c \(\in\) { 2;3;7 } => \(\overline{abc}\) \(⋮\) 2 => c = 2
Vậy ta có các số : 372 và 732
Vì : 372 \(⋮\)3 và \(⋮̸\) 7 ; 732 \(⋮\)3 và \(⋮̸\) 7 ( Vô lý )
+) Nếu a,b,c \(\in\) { 3;5;7 }
=> \(\overline{abc}⋮3\Rightarrow a+b+c⋮3\)
Vì : a + b + c = 3 + 5 + 7 = 12
Mà : \(\overline{abc}⋮5\Rightarrow c=5\)
Vậy ta có các số : 375 và 735
Vì : 375 \(⋮̸\) 7 ; \(735⋮7\)
=> \(\overline{abc}=735\)
Vậy số cần tìm là : 735 .
theo đề ta có :
abc=11(a+b+c)
89a=b+10c
Ta thấy \(0\le b,c\le9\)\(\Rightarrow b+10c\le99\)\(\Rightarrow a=1\)(do a khác 0)
\(\Rightarrow b=9,c=8\)
\(\Rightarrow abc=198\)
Cho a thuộc Z .Chứng tỏ
A = a(a+1) (a+2)(a+3)(a+40) chia hết 40