\(\frac{15}{a}=\frac{a-1}{28}\) a=.....

Giúp với!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

\(\frac{15}{a}=\frac{\left(a-1\right)}{28}\)

\(\Rightarrow a\left(a-1\right)=15.28\)

\(\Rightarrow a\left(a-1\right)=420=21.20\)

Vậy : a = 21

23 tháng 1 2017

mk xin lỗi, bn Hạo giải đúng rồi nên mk thôi, bn xem cách làm của bn ấy nhé Đỗ Thị Khánh Linh

27 tháng 2 2017

Đây nhé bạn:

https://hoc24.vn/hoi-dap/question/172644.html

27 tháng 2 2017

\(\frac{15}{a}=\frac{a-1}{28}\)

\(\Rightarrow15.28=\left(a-1\right)a\)

\(\Rightarrow420=\left(a-1\right)a\)

\(\Rightarrow20.21=\left(a-1\right)a\)

\(\Rightarrow a=21\)

21 tháng 11 2018

soyeon_Tiểubàng giải1 tháng 10 2016 lúc 20:35

Ta có:

5a + 7b/6a + 5b = 29/28

=> (5a + 7b).28 = (6a + 5b).29

=> 140a + 196b = 174a + 145b

=> 196b - 145b = 174a - 140a

=> 51b = 34a

=> 3b = 2a

=> a/b = 3/2

Mà (a,b)=1; a,b thuộc N

=> a = 3; b = 2

Vậy a = 3; b = 2

18 tháng 5 2020

bài của bạn Nguyễn Văn Hòa hợp con nhà bà lý luôn

=) =) =) =) =)

24 tháng 8 2021

a) Để A>0 thì \(\frac{n-20}{30}>0\) mà 30>0 nên n-20>0 hay n>20

b) \(1< A< 2\Leftrightarrow\frac{30}{30}< \frac{n-20}{30}< \frac{60}{30}\)

\(\Rightarrow30< n-20< 60\)

\(\Rightarrow50< n< 80\)( Cộng 3 vế với 20 )

c) Tương tự câu b :

\(\frac{15}{30}< \frac{n-20}{30}< \frac{30}{30}\Leftrightarrow15< n-20< 30\)

\(\Rightarrow35< n< 50\)

\(n\in\left\{36;37;...;49\right\}\)

Nên n có \(49-36+1\)số hạng hay n có 14 số hạng

18 tháng 11 2023

bài 2 bn nên cộng 3 cái lại

mà năm nay bn lên đại học r đúng k ???

11 tháng 2 2017

Làm ơn giúp mik với các bn ơi!

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

14 tháng 9 2019

Ta có : \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Rightarrow P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

\(\Rightarrow P+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(\Rightarrow P+3=\left(a+b+c\right).\frac{1}{b+c}+\left(a+b+c\right).\frac{1}{c+a}+\left(a+b+c\right).\frac{1}{a+b}\)

\(\Rightarrow P+3=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(\Rightarrow P+3=2019.10\)

\(\Rightarrow P+3=20190\)

\(\Rightarrow P=20190-3\)

\(\Rightarrow P=20187\)

Vậy P = 20187