\(\frac{n-20}{30}\) với n là 1 số nguyên.

a) Tìm điều kiện của n...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

a) Để A>0 thì \(\frac{n-20}{30}>0\) mà 30>0 nên n-20>0 hay n>20

b) \(1< A< 2\Leftrightarrow\frac{30}{30}< \frac{n-20}{30}< \frac{60}{30}\)

\(\Rightarrow30< n-20< 60\)

\(\Rightarrow50< n< 80\)( Cộng 3 vế với 20 )

c) Tương tự câu b :

\(\frac{15}{30}< \frac{n-20}{30}< \frac{30}{30}\Leftrightarrow15< n-20< 30\)

\(\Rightarrow35< n< 50\)

\(n\in\left\{36;37;...;49\right\}\)

Nên n có \(49-36+1\)số hạng hay n có 14 số hạng

7 tháng 6 2018

1.

bạn xem lại đề nhé: nếu đúng thì mình nhẩm được n = 0

2.

  X = 2/a để X thuộc N thì a phải thuộc N và là ước của 2

ước tự nhiên của của 2 = { 1; 2}

Vậy a = 1 hoặc a = 2

3.

Y = -3/a  để Y là số âm thì a phải là một số dương (khác 0)

4. \(Z=\frac{a-3}{2}\) đê Z âm thì tử là a - 3 phải âm vì mẫu là một số dương

\(a-3\le0\Rightarrow a\le3\)

5

.\(T=\frac{a+1}{a-2}\) để T dương thì tử và mẫu phải cùng dấu

TH1: a+1 < 0   => a < -1

         a-2 < 0  => a < 2

       =====> a <-1

TH2: 

a+1 > 0   => a > -1

         a-2 > 0  => a > 2

       =====> a > 2

vậy a < -1 hoặc a > 2 thì T là một số dương

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

3 tháng 7 2018

1.a) để A là số hữu tỉ thì 2n+3 nguyên và n - 1 khác 0

từ hai điều kiện trên suy ra n nguyên và n khác 1

b) để A nguyên thì 2n+3 ⋮ n - 1

⇒ 2(n - 1) +5 ⋮ n - 1

⇒ 5 ⋮ n - 1

⇒n ∈ {-4; 0; 2; 6}

2. x < y ⇔ \(\dfrac{a}{n}< \dfrac{b}{n}\)

\(\Rightarrow\dfrac{2a}{2n}< \dfrac{a+b}{2n}< \dfrac{2b}{2n}\Leftrightarrow x< z< y\)

19 tháng 7 2015

\(\frac{1}{27}=3^{\frac{1}{81}}\)
=> \(n=\frac{1}{81}\)


\(\frac{16}{2^n}=\frac{1}{2}=\frac{16}{32}=\frac{16}{2^5}\)

=> n = 5


32 < 2n < 128

=> 25 < 2n < 27

=> 2n = 26

=> n = 6

28 tháng 8 2018

ai làm đk mình k cho

28 tháng 8 2018

Ta có:  a < b     =>    2a < a + b

           c < d      =>    2c < c + d

           m < n     =>    2m < m +n

suy ra:    2 ( a + c + m)  < a + b + c + d + m + n

=>   \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)