Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Olm chào em. Em cần làm gì với biểu thức này nhỉ.
Ta có: 6a + 13 là số nguyên tố và 25 nhỏ hơn hoặc bằng 6a + 13 , và 6a + 13 nhỏ hơn hoặc bằng 45
=> 6a + 13 thuộc { 29;31;37;41;43 }
+ Nếu 6a + 13 = 29 => 6a = 29 - 13 = 16 => a = 16/6 ( loại )
+ Nếu 6a + 13 = 31 => 6a = 31 - 13 = 18 => a = 18 : 6 = 3 ( thỏa mãn )
+ Nếu 6a + 13 = 37 => 6a = 37 - 13 = 24 => a = 24 : 6 = 4 ( thỏa mãn )
+ Nếu 6a + 13 = 41 => 6a = 41 - 13 = 28 => a = 28/6 ( loại )
+ Nếu 6a + 13 = 43 => 6a = 43 - 13 = 30 => a = 30 : 6 = 5 ( thỏa mãn )
Vậy a thuộc {3;4;5 } thì 6a + 13 là số nguyên
1/
Vì $ƯCLN(x,y)=6$ nên đặt $x=6m, y=6n$ với $m,n$ là số tự nhiên, $m,n$ nguyên tố cùng nhau.
Theo bài ra ta có:
$xy=720$
$\Rightarrow 6m.6n=720$
$\Rightarrow mn=20$
Do $m,n$ nguyên tố cùng nhau nên $(m,n)=(1,20), (4,5), (5,4), (20,1)$
$\Rightarrow (x,y)=(6,120), (24,30), (30,24), (120,60)$
2/
Vì $5x=|x+2|+|2x+1|+|x+3|\geq 0$ nên $x\geq 0$
$\Rightarrow |x+2|=x+2; |2x+1|=2x+1; |x+3|=x+3$. Bài toán trở thành:
$x+2+2x+1+x+3=5x$
$\Rightarrow 4x+6=5x$
$\Rightarrow x=6$ (thỏa mãn)
Nếu n=0 thì n + 9 = 0 + 9 = 9; n + 15 = 0 + 15 = 15 đều là hợp số (loại)
Nếu n = 1 thì n + 3 = 1 + 3 = 4; n + 7 = 1 + 7 = 8; n + 9 = 1 + 9 = 10; n + 13 = 1 + 13 = 14; n + 15 = 1 + 15 = 16 đều hợp số (loại)
Nếu n = 2 thì n + 7 = 2 + 7 = 9; n + 13 = 2 + 13 = 15 là hợp số (loại)
Nếu n = 3 thì n + 1 = 3 + 1 = 4; n + 3 = 3 + 3 = 6; n + 7 = 3 + 7 = 10; n + 9 = 3 + 9 = 12; n + 13 = 3 + 3 = 16; n + 15 = 3 +15=18 đều là hợp số (loại)
Nếu n = 4 thì n + 1 = 4 + 1 = 5; n + 3 = 4 + 3 = 7; n + 7 = 4 + 7 = 11; n + 13 = 13 + 4 = 17; n + 15 = 15 + 4 = 19; n +9= 4 + 9= 13 đều là số nguyên tố (chọn)
Nếu n = 5 thì n + 1 = 1 + 5= 6;n+ 3 = 5 + 3 = 8;n + 9 = 5 + 9 = 14;n + 13 = 5 + 13 = 18;n + 15 = 15 + 15 = 20 đều là hợp số (loại)
Xét n> 5 thì n = 5k + 1 hoặc 5k + 2 hoặc 5k + 3 hoặc 5 k + 4
Nếu n = 5k+ 1 thì n + 9 = 5k + 1 + 9 = 5k + 10 = 5x (k + 2) chia hết cho 5 (loại)
Nếu n = 5k + 2 thì n + 3 = 5k + 2 + 3 = 5k + 5 = 5 x (k+ 1) chia hết cho 5;n + 13 = 5k+ 2 + 13 = 5k+ 15 = 5 x(k+3)chia hết cho 5 (loại)
Nếu n=5k + 3 thì n + 7 = 5k + 3 + 7 = 5k + 10 = 5 x (k+2) chia hết cho 5 (loại)
Nếu n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 = 5 x (k+ 1) chia hết cho 5 (loại)
Suy ra n < 5. Vậy n = 4 thì n + 1; n + 3;n + 9; n + 3;n + 13; n + 15 là số nguyên tố.
\(x^2\) + 165 = y2
y2 - \(x^2\) = 165
\(y^2\) - \(xy\) + \(xy\) - \(x\)2 = 165
(\(y^2\) - \(xy\)) + (\(xy\) - \(x\)2) = 165
\(y\left(y-x\right)\) + \(x\)( y - \(x\)) = 165
(\(y-x\))(\(x+y\)) = 165 = 15 \(\times\) 11 = 3 \(\times\) 55 = 5 \(\times\) 33
y + \(x\) = 15
y - \(x\) = 11
trừ vế cho vế ta được
2\(x\) = 4=> \(x\) = 2=> y = 11 + 2 = 13
\(y+x=55\)
y - \(x\) = 3
Trừ vế với vế ta được: 2\(x\) = 55 - 3
2\(x\) = 52
\(x\) = 52 : 2
\(x\) = 26 ⇒ y = 55 - 26 = 29
\(y+x=33\)
y - \(x\) = 5
Trừ vế với vế ta được: 2\(x\) = 28
\(x\) = 28: 2
\(x\) = 14 ⇒ y = 5 + 14 = 19
Vậy ta có các cặp nghiệm thỏa mãn yêu cầu đề bài là:
(\(x\); y) = ( 2; 13); (14; 19); ( 26; 29)
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25