K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

 n thỏa mãn vs mọi giá trị

26 tháng 9 2015

Ta có:

2008100+200899

= 200899.2008+200899

= 200899.(2008+1)

= 200899.2009

Vì 2009 chia hết cho 2009 => 200899.2009 chia hết cho 2009 => 2008100+200899 chia hết cho 2009

26 tháng 9 2015

2008100 + 200899 = 200899(2008+1) = 200899. 2009

=> 2008100 + 200899 chia hết cho 2009

 

7 tháng 8 2018

\(2008^{99}\cdot2008+2008^{99}\)

\(=2008^{99}\cdot\left(2008+1\right)\)

\(=2008^{99}.2009⋮2009\left(dpcm\right)\)

7 tháng 8 2018

Ta có: 2008100+200899=200899.2008+200899.1

                                     =200899.(2008+1)

                                     =200899.2009

                                     =200899.2009 \(⋮\)2009

2 tháng 5 2021

Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)

\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)

\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)

\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)

\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)

chia hết cho 2019

=> đpcm

17 tháng 1 2016

max dễ :

10 chia 3 dư 1 , suy ra 10^n chia 3 dư 1^n

                        suy ra 10^n chia 3 dư 1

                        ta có : 4 chia 3 dư 1

                        suy ra 10^n-4 chia 3 dư 1-1

                                  10^n-4 chia 3 dư 0

 10^n-4 chia het cho 3

17 tháng 1 2016

Cái gì mà dễ ợt?câu hỏi nào cũng đăng dễ ợt!

2 tháng 6 2015

Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:

 \(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)

\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)

\(=2009^{2008}-1\)

\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)

\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008

=> ĐPCM

 

2 tháng 6 2015

Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.

Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008

Ta có:

+)A=2009+20092+20093+20094+...+20092009

  2009A= 20092+20093+20094+...+20092010

   2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)

  2008A=20092010- 2009

=> A=(20092010- 2009)/2008 

=> A chia hết cho 2008.

B=1+2009+20092+20093+20094+...+20092008

2009B=2009+20092+20093+20094+...+20092010

2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)

2008B=20092010-1

=>B=(20092010-1)/2008

=>B chia hết cho 2008

=> A-B chia hết cho 2008.

=> ĐPCM