Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)
\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)
\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)
\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)
Xong chắc xét các TH với p,q là số nguyên tố
Xét q = 3
Ta có. p^2-3p-27 =27
=> p^2 - 3p - 54 = 0
=> p = - 6 hoặc p = 9 (đều không TM)
Xét q # 3. Ta có
p^2 - pq - q^3 = 27
=> p^2 - pq = q^3 + 27
=> p(p-q) = (q+3)[q^2 - 3q + 9] (*)
Nhận xét.
*) p > p - q (1)
*) q^2 -3q+ 9 -(q+3)
= q^2 -4q +6 = (q-2)^2 +2>0
=> q^2 - 3q + 9 > q + 3
*) ƯCLN( q^2 - 3q + 9; q+3)
= ( q(q+3)-6(q+3) +27;q+3)
= (27; q+3) = (3^3; q+3)
= 1 (3) ( vì q#3 nên q + 3 không chia hết cho 3...)
Từ (1); (2); (3) => (*) <=>
{ p = q^2 - 3q + 9
{ p-q = q + 3
=> 2q + 3 = q^2 - 3q + 9
=> q^2 - 5q + 6 = 0.=> q = 2 hoặc q = 3 (đã xét )
Với q = 2 ta có p = 2q + 3
=> p = 7 (TM)
ĐS: p = 7; q = 2
a) \(p^2q+p⋮\left(p^2+q\right)\Rightarrow q\left(p^2+q\right)-\left(p^2q+q\right)=q^2-p\left(p^2+q\right)\)
\(pq^2+q⋮\left(q^2-p\right)\Rightarrow\left(pq^2+q\right)-p\left(q^2-p\right)=p^2+q⋮q^2-p\)
\(q^2-p=-\left(p^2+q\right)\Leftrightarrow q^2+q+p^2-p=0\left(VN\right)\)
\(q^2-p=p^2+q\Leftrightarrow\left(q+p\right)\left(q-p-1\right)=0\Leftrightarrow q-p-1=0\Leftrightarrow q=p+1\)
Mà p,q là 2 số nguyên tố nên p=2, q=3
Ta có:
p2−2q2=1⇒p2=2q2p2−2q2=1⇒p2=2q2mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)
Ta có:
(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(vì q là số nguyên tố) tìm được p = 3
Vậy: (p;q)∈{3;2}
Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4
xét p=7 dễ thấy đó là số cần tìm
giả sử p2p2 chia 7 dư 1 => 3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí
tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí
=> p chia hết cho 7 nên p=7
b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42
từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3
xét z <3, ta có:
z=2=>z2−6=−2z2−6=−2 không chia hết cho 3
z=1=> z2−6=−5z2−6=−5 không chia hết cho 3
suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0
suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:
(x;y;z)=(0;1;3);(6;1;3);(3;2;3)
Duyệt nha
Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4
xét p=7 dễ thấy đó là số cần tìm
giả sử p2p2 chia 7 dư 1 => 3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí
tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí
=> p chia hết cho 7 nên p=7
b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42
từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3
xét z <3, ta có:
z=2=>z2−6=−2z2−6=−2 không chia hết cho 3
z=1=> z2−6=−5z2−6=−5 không chia hết cho 3
suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0
suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:
(x;y;z)=(0;1;3);(6;1;3);(3;2;3)
Duyệt nha