Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p2 = 1 + 6q2
⇒ p là số lẻ
Đặt p = 2k + 1
⇒ p2 = 4k2 + 4k + 1
⇒ 4k2 + 4k = 6q2
⇒ 2k2 + 2k = 3q2
⇒ 3q2 là số chẵn mà 3 là số lẻ
⇒ q2 là chẵn => q là chẵn => q là 2
⇒ p = \(\sqrt{1+6\cdot2^2}\) = 5
\(Giải.\)
\(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\Leftrightarrow\left(x+1\right)\left(x-1\right)=2y^2\left(chẵn\right)\)
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)