K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

Giả sử p^4+p^3+p^2+p+1 = n^2 
Ta có; 
+) 4n^2 ≥ 4p^4 + 4p^3 + 4p^2 + 4p+ 4 ≥ 4p^4+ 4p^3 + p^2 = ( 2p^2 + p )^2 [**] 
+) 4n^2 ≤ 4p^4 + 4p^3 + 4p^2 + 4p + 4 + 5p^2 = ( 2p^2 + p + 2 )^2 [***] 
Từ [**] và [***], suy ra; 
4n^2 = ( 2p^2 + p + 1 )^2 
Suy ra; 2n = 2p^2 + p + 1 
Bình phương hai vế của đẳng thức này và so sánh với n^2, ta suy ra; 
p^2 - 2p - 3 = 0 
\(\Leftrightarrow\) ( p + 1 )( p - 3 ) = 0 
Vì p là số nguyên tố nên phương trình trên có nghiệm p = 3 thỏa mãn. 
Vậy số nguyên tố cần tìm là 3.

24 tháng 8 2016

giúp mk vs mn ơi

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp

28 tháng 4 2024

a)

Xét x=0 => A = 1 không là số nguyên tố

Xét x=1 => A= 3 là số nguyên tố (chọn)

Xét x>1

Có A = x14+ x13 + 1 = x14 - x+ x13 - x + x+ x + 1

A = x2(x12-1) + x(x12-1) + x2+x+1

A = (x2+x)(x3*4-1) + x2 + x + 1

Có x3*4 chia hết cho x3

=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)

=> x3*4-1 chia hết cho x2+x+1

=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)

=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)