Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)
a) Để A là phân số thì \(n-1\ne0\)
=> \(n\ne1\)
b) ĐK: n khác 1
Để A là 1 số nguyên thì \(n-2⋮n-1\)
\(\Leftrightarrow1⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(1\right)\)
...
a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1
b) \(\frac{5}{n-1}\)+ \(\frac{n-3}{n-1}\)= \(\frac{5+n-3}{n-1}\)= \(\frac{n+2}{n-1}\)= \(\frac{n-1+3}{n-1}\)= \(\frac{3}{n-1}\)
Để A là số nguyên thì 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}
=> n \(\in\){ 2; 4; 0; -2}
Vậy...
Để \(\frac{19}{n-1}.\frac{n}{9}\)\(\in\)Z thì 19n chia hết cho 9(n - 1) (1)
Từ (1) => 19n chia hết cho 9, mà ƯCLN(19,9) = 1 => n chia hết cho 9
Từ (1) => 19n chia hết cho n - 1, mà ƯCLN(n, n - 1) = 1 => 19 chia hết cho n - 1
=> n - 1 \(\in\)Ư(19) = {-1; 1; -19; 19}
=> n \(\in\){0; 2; -18; 20}
Mà n chia hết cho 9
=> n \(\in\) {0; -18}
a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)
để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3
suy ra n-1 thuộc -3;-1;1;3
suy ra n thuộc -2;0;2;4
b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)
để n+10 là bội của n-1 thì 11 phải là bội của n-1
suy ra n-1 thuộc -11;-1;1;11
suy ra n thuộc -10;0;2;12
gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé
c/ gọi ba số đó là n-1;n;n+1
ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z
vậy tổng 3 số liên tiếp luôn chia hết cho 3
nhớ k cho mình nhé ^.^
Ta có : 3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3(n - 1) + 3 chia hết cho n - 1
<=> 3 chia hết cho n - 1
<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Để 2n - 3 / 2n + 2 là phân số tối giản thì ƯC ( 2n - 3 , 2n + 2 ) = 1
=> 2n - 3 và 2n + 2 là hai số nguyên tố cùng nhau
Làm đến đây mik xin chịu
\(\frac{n-8}{n+3}\)nguyên => \(n-8⋮n+3\)
=> \(n+3-11⋮n+3\)
=> 11 chia hết cho n+3
=> n+3 thuộc tập hợp các số \(11;-11;1;-1\)
=> n thuộc tập hợp các số 8,-14,-2,-4