\(\varepsilon\)\(ℤ\) sao cho 2n - 3 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

2n - 3 chia hết cho n + 1

=> 2(n+1) - 5 chia hết cho n + 1

=> 5 chia hết cho n + 1 

=> n + 1 thuộc Ư(5) = { -5 ; -1; 1 ; 5 }

n+1-5-115
n-6-204

Theo bài ra ta có 

\(2x-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow-5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 11-15-5
n0-24-6
25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

Tìm x thuộc Z để A thuộc Z nha mn :)

19 tháng 2 2020

Để \(A\inℤ\) thì \(2A\inℤ\)

Ta có: \(2A=\frac{2\left(x-1\right)}{2x+3}=\frac{2x-2}{2x+3}=\frac{2x+3-5}{2x+3}=1-\frac{5}{2x+3}\)

Vì \(1\inℤ\)\(\Rightarrow\) Để \(2A\inℤ\)thì \(5⋮2x+3\)

\(\Rightarrow2x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị ta có: 

\(2x+3\)\(-5\)\(-1\)\(1\)\(5\)
\(2x\)\(-8\)\(-4\)\(-2\)\(2\)
\(x\)\(-4\)\(-2\)\(-1\)\(1\)

Thay các giá trị của x vào A ta thấy tất cả đều thoả mãn \(A\inℤ\)

Vậy \(x\in\left\{-4;-2;-1;1\right\}\)

11 tháng 6 2019

đáp án

a) 2/581/1677

b)-29/30

11 tháng 6 2019

a) \(\frac{5}{9}:\left(\frac{5}{12}-\frac{1}{11}\right)-\frac{5}{9}:\left(\frac{-1}{5}-\frac{2}{3}\right)\)

\(\frac{5}{9}:\left(\frac{55}{132}-\frac{12}{132}\right)-\frac{5}{9}:\left(\frac{-3}{15}-\frac{10}{15}\right)\)

\(\frac{5}{9}:\frac{43}{132}-\frac{5}{9}:\frac{-13}{15}\)

\(\frac{5}{9}\times\frac{132}{43}-\frac{5}{9}\times\frac{-15}{13}\)

=\(\frac{5}{9}\times\left(\frac{132}{43}-\frac{-15}{13}\right)\)

=\(\frac{5}{9}\times\frac{2361}{559}\)( Đến đây bạn tự quy đồng mẫu nha)

=\(\frac{3935}{1677}\)

\(\frac{-1}{3}.\frac{5}{7}-\frac{1}{3}.\frac{-7}{5}\)

\(=\frac{-1}{3}.\frac{5}{7}+\frac{-1}{3}.\frac{-7}{5}\)

\(=\frac{-1}{3}.\left(\frac{5}{7}+\frac{-5}{7}\right)\)

\(=\frac{-1}{3}.0=0\)

23 tháng 12 2018

Chị giải hộ cho e bài toán của em dc khmột chút thôinhe

23 tháng 12 2018

câu hỏi j ạ

9 tháng 8 2020

a, \(\left|x-3,5\right|+\left|x-\frac{1}{3}\right|=0\)

\(\hept{\begin{cases}x-3,5\ge0\forall x\\x-\frac{1}{3}\ge0\forall x\end{cases}\Rightarrow\left|x-3,5\right|+\left|x-\frac{1}{3}\right|\ge0\forall x}\)

Dấu ''='' xảy ra <=> \(x-3,5=0\Leftrightarrow x=3,5\)

\(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)

b, \(\left|x\right|+x=\frac{1}{3}\Leftrightarrow\left|x\right|=\frac{1}{3}-x\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-x\\x=-\frac{1}{3}+x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0\ne-\frac{1}{3}\end{cases}\Leftrightarrow}x=\frac{1}{6}}\)

c, \(\left|x-2\right|=x\Leftrightarrow\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}-2\ne0\\x=1\end{cases}}}\)

d, tương tự c 

9 tháng 8 2020

Sửa ý a) của bạn @akirafake 

a) \(\left|x-3,5\right|+\left|x-1,3\right|=0\)

Ta có : \(\left|x-3,5\right|+\left|x-1,3\right|=\left|-\left(x-3,5\right)\right|+\left|x-1,3\right|=\left|3,5-x\right|+\left|x-1,3\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(\left|3,5-x\right|+\left|x-1,5\right|\ge\left|3,5-x+x-1,5\right|=\left|2\right|=2\)

mà \(\left|x-3,5\right|+\left|x-1,3\right|=0\)( vô lí )

Vậy không có giá trị của x thỏa mãn 

b) \(\left|x\right|+x=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{3}-x\)

=> \(\orbr{\begin{cases}x=\frac{1}{3}-x\\x=x-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{3}\\0x=-\frac{1}{3}\end{cases}\Rightarrow}2x=\frac{1}{3}\Rightarrow x=\frac{1}{6}\)

c) \(\left|x\right|-x=\frac{3}{4}\)

=> \(\left|x\right|=\frac{3}{4}+x\)

=> \(\orbr{\begin{cases}x=\frac{3}{4}+x\\x=-x-\frac{3}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}0x=\frac{3}{4}\\2x=-\frac{3}{4}\end{cases}}\Rightarrow2x=-\frac{3}{4}\Rightarrow x=-\frac{3}{8}\)

d) \(\left|x-2\right|=x\)

=> \(\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\\2x=2\end{cases}}\Rightarrow2x=2\Rightarrow x=1\)

e) \(\left|x+2\right|=x\)

=> \(\orbr{\begin{cases}x+2=x\\x+2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=-2\\2x=-2\end{cases}}\Rightarrow2x=-2\Rightarrow x=-1\)

Thế x = -1 ta được :

\(\left|-1+2\right|=-1\)( vô lí )

=> Không có giá trị của x thỏa mãn

21 tháng 7 2019

BACˆ=180o−(Bˆ+Cˆ)=180o−80o=100oBAC^=180o−(B^+C^)=180o−80o=100o

yAcˆ=180o−100o=80oyAc^=180o−100o=80o

Mà tia Ax là tia phân giạc góc ngoài của A

⇒yAxˆ=xACˆ=yAcˆ2=80o2=40o⇒yAx^=xAC^=yAc^2=80o2=40o

Ở vị trí so le trong => Ax//BC

21 tháng 7 2019

Tam giác ABC có : 

            \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)   ( tổng 3 góc của 1 tam giác )

           \(\widehat{BAC}+40^o+40^o=180^o\)

          \(\widehat{BAC}+80^o=180^o\)

=> \(\widehat{BAC}=100^o\)

Ta có : \(\widehat{BAC}+\widehat{xAC}=180^o\)

           \(100^o+\widehat{xAC}=180^o\)

=> \(\widehat{xAC}=80^o\)

Do AM là tia p/g của góc xAC => \(\widehat{xAM}=\widehat{CAM}=\frac{1}{2}.\widehat{xAC}=\frac{1}{2}.80^o=40^o\)

=> \(\widehat{CAM}=\widehat{C}\)( =40o )

mà 2 góc này ở vị trí so le trong => AM//BC ( đpcm )

\(\frac{16}{2n}\)= \(2\)

\(\frac{2^4}{2n}\)\(=2\)

\(2^{4-n}\)= \(2^1\)

=> \(4-n=1\)

\(n=4-1\)

\(n=3\)

Vậy , n =3 .

b , \(8^n\)\(2^n\)\(=4\)

\(\left(8:2\right)^n\)\(=4\)

\(4^n\)\(=4\)

=> \(n=1\)

Vậy , n =1