\(\Delta ABC\)\(\widehat{B}=\widehat{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

BACˆ=180o−(Bˆ+Cˆ)=180o−80o=100oBAC^=180o−(B^+C^)=180o−80o=100o

yAcˆ=180o−100o=80oyAc^=180o−100o=80o

Mà tia Ax là tia phân giạc góc ngoài của A

⇒yAxˆ=xACˆ=yAcˆ2=80o2=40o⇒yAx^=xAC^=yAc^2=80o2=40o

Ở vị trí so le trong => Ax//BC

21 tháng 7 2019

Tam giác ABC có : 

            \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)   ( tổng 3 góc của 1 tam giác )

           \(\widehat{BAC}+40^o+40^o=180^o\)

          \(\widehat{BAC}+80^o=180^o\)

=> \(\widehat{BAC}=100^o\)

Ta có : \(\widehat{BAC}+\widehat{xAC}=180^o\)

           \(100^o+\widehat{xAC}=180^o\)

=> \(\widehat{xAC}=80^o\)

Do AM là tia p/g của góc xAC => \(\widehat{xAM}=\widehat{CAM}=\frac{1}{2}.\widehat{xAC}=\frac{1}{2}.80^o=40^o\)

=> \(\widehat{CAM}=\widehat{C}\)( =40o )

mà 2 góc này ở vị trí so le trong => AM//BC ( đpcm )

16 tháng 8 2020

a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).

Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).

AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).

Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).

Đáp số: Số đo góc AMC = 110 độ.

b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).

Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).

Đáp số: Số đo góc ABE = 40 độ.

A B C M D E

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

b) Vì H là trung điểm BC 

=> BH = HC 

Mà BH = BE (gt)

=> BH = HC = BE 

Vì ∆ABC cân tại A 

=> AB = AC 

Mà AB = CD (gt)

=> AB = AC = CD 

Ta có : 

EB + AB = AE 

HC + CD = HD 

=> AE = HD 

a) Ta có : 

ACB là góc ngoài tại C của ∆ACD 

Vì CA = CD 

=> ∆ACD cân tại C 

=> D = DAC = 2D 

=> ACB = D + CAD = 2D 

=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

14 tháng 8 2020

B C A I 1 1 2 2 M

a) xét \(\Delta ABC\)

\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow80^o+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)

mà hai tia BI và CI lần lượt là tia hân giác của ^B và ^C

\(\Rightarrow\widehat{B_1}+\widehat{B_2}+\widehat{C_1}+\widehat{C_2}=100^o\)

\(\Rightarrow2\widehat{B_2}+2\widehat{C_2}=100^o\)

\(\Rightarrow2\left(\widehat{B_2}+\widehat{C_2}\right)=100^o\)

\(\Rightarrow\widehat{B_2}+\widehat{C_2}=50^o\)

XÉT \(\Delta BCI\)

\(\widehat{B_2}+\widehat{C_2}+\widehat{BIC}=180^o\left(đl\right)\)

THAY \(50^o+\widehat{BIC}=180^o\)

\(\Rightarrow\widehat{BIC}=180^o-50^o=130^o\)

B) TA CÓ

\(\widehat{BIC}=130^o;\widehat{BAC}=80^o\)

\(\Rightarrow\widehat{BIC}>\widehat{BAC}\left(1\right)\left(130^o>80^o\right)\)

mà \(\widehat{BIC}>\widehat{BMC}\left(2\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)

MÀ \(\widehat{BAM}< \widehat{BMC}\)HAY \(\widehat{BAC}< \widehat{BMC}\left(3\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)

TỪ (1) VÀ (2) VÀ (3) \(\Rightarrow\widehat{BIC}>\widehat{BMC}>\widehat{BAC}\)

7 tháng 5 2020

Bài này .....

7 tháng 5 2020

Bạn ơi, bài này sai đề r, phải là gọi H,K lần lượt lầ hc của I trên AB,BC!

14 tháng 7 2018

a, góc BAH = góc HCA vì cùng phụ vời góc HAC

b, Kẻ DK vuông góc với AC.

BA= BD(gt) nên tam giác ABD cân tại A

Suy ra: góc BAD= góc BDA

Mà góc BDA +góc HAD = 90 độ (vì tam giác AHD vuông tại A) ,góc BAD+ góc KAD =góc BAC =90 độ

Do đó: góc HAD =góc KAD

Chứng minh được tam giác HAD =tam giác KAD (cạnh huyền-góc nhọn)

Dẫn đến góc HAD =góc KAD hay góc HAD= góc DAC và lại có tia AD nằm giữa 2 tia AH,AC

Vậy AK là tia p/g của góc HAC

c, tam giác HAD= tam giác KAD(cmt) nên AH=AK

                                                              DH=DK (1)

tam giác DKC vuông tại K nên DK<DC (2) và KC<DC

TỪ (1) và (2) suy ra: DH<DC

d, Ta có: AB =BD(gt), AK =AH(cmt) và KC<DC(cmt)

Do đó: AB +AK +KC < BD +AH +DC

Nên : AB+AC < BC+AH < BC +2AH

Vậy AB+AC < BC+ 2AH