Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)
Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên
\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3
\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)
\(n-2=1\Rightarrow n=1+2=3\)
\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)
\(n-2=3\Rightarrow n=3+2=5\)
\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)
Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số
Xin lổi
Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé
\(b)\) Ta có :
\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại )
Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Rightarrow\)\(3n=-1\)
\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) )
\(\Rightarrow\)\(3n+2=2\)
\(\Rightarrow\)\(3n=0\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)
Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\inℤ\) thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)
Vậy \(n=1\) hoặc \(n=-1\)
Chúc bạn học tốt ~
Có n thuộc Z
Có -8/n nguyên ( điều kiện để phân số tồn tại : n khác 0)
=> n thuộc Ư(-8) ( vì n thuộc Z) => n thuộc {1;-1;2;-2;4;-4;8;-8} (*)
Có 13/n-1 nguyên (điều kiện để phân số tồn tại : n khác 1)
=> n-1 thuộc Ư{13} ( vì n thuộc Z nên n-1 thuộc Z)
=> n-1 thuộc {1;-1;13;-13} => n thuộc {2;0;14;-12} (2*)
Có 4/n+2 nguyên ( điều kiện để phân số tồn tại : n khác -2)
=> n+2 thuộc Ư(4) ( vì n thuộc Z nên n+2 thuộc Z )
=> n+2 thuộc {1;2;4;-1;-2;-4} => n thuộc {-1;0;2;-3;-4;-6} (3*)
Từ (1*) ; (2*) và (3*) => n=2 ( thỏa mãn điều kiện n thuộc Z ; n khác 0; n khác 1; n khác -2)
Tích cho mk nhoa !!!!!! ~~~
a, \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
n+1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 0 | -2 | 1 | -3 | 3 | -5 | 7 | -9 |
b, \(\dfrac{n-2+5}{n-2}=1+\dfrac{5}{n-2}\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n-2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 6 | -3 |
c, \(\dfrac{3\left(n+4\right)-17}{n+4}=3-\dfrac{17}{n+4}\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
Để các phân số sau thuộc giá trị nguyên
=> tử phải chia hết cho mẫu(cách làm)
Bài 1:
\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)
Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)
Bài 3:
\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)
\(\Rightarrow n-2⋮n+3\)
\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)
\(-\frac{12}{n}\) có giá trị nguyên khi -12\(⋮\)n
\(\Rightarrow n\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vậy \(n\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)thì phân số \(-\frac{12}{n}\)có giá trị nguyên.
\(\frac{15}{n-2}\) có giá trị nguyên khi 15\(⋮\)n-2
\(\Rightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5;-3;7;-13;17\right\}\)
Vậy \(n\in\left\{1;3;-1;5;-3;7;-13;17\right\}\)thì phân số \(\frac{15}{n-2}\) có giá trị nguyên.
Phần cuối tương tự như phần thứ 2 nên bạn tự làm nhé!
Đặt A là tập hợp các giá trị của n trong \(\frac{-12}{n}\)
\(\frac{-12}{n}\)có giá trị nguyên => \(n\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
=> \(A=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Đặt B là tập hợp các giá trị của n trong \(\frac{15}{n-2}\)
\(\frac{15}{n-2}\)có giá trị nguyên => \(n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)=> \(n\in\left\{3;1;5;-1;7;-3\right\}\)
=> \(B=\left\{3;1;5;-1;7;-3\right\}\)
Đặt C là tập hợp các giá trị của n trong \(\frac{8}{n+1}\)
\(\frac{8}{n+1}\)có giá trị nguyên => \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)=> \(n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
=> \(C\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
=> A ∩ B ∩ C = { -3 ; 3 }
=> n = { -3 ; 3 } thì các phân số trên đều có giá trị nguyên
Để \(\frac{n^2+n+2}{n+1}\) có giá trị là số nguyên thì \(\left(n^2+n+2\right)⋮\left(n+1\right)\)
Ta có : n2 + n + 2 = n x n + n + 2 = n x ( n + 1 ) + 2
=> n x ( n + 1 ) + 2 chia hết cho n + 1
Ta thấy : n x ( n + 1 ) chia hết cho n + 1
=> 2 chia hết cho n + 1
Hay \(\left(n+1\right)\inƯ_2\)
Ư(2) = { 1 ; -1 ; 2 ; -2 }
Ta có bảng sau :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy để A có giá trị là số nguyên thì \(n\in\) { 0 ; -2 ; 1 ; -3 }
Để \(A\in Z\)thì \(n^2+n+2⋮n+1\)
\(\Rightarrow n\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\left\{-2;2;-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;1;-2;0\right\}\)
\(\frac{n+1}{n^2-2}\inℤ\Rightarrow\frac{\left(n+1\right)\left(n-1\right)}{n^2-2}=\frac{n^2-1}{n^2-2}=\frac{n^2-2+1}{n^2-2}=1+\frac{1}{n^2-2}\inℤ\)
mà \(n\inℤ\)suy ra \(n^2-2\inƯ\left(1\right)=\left\{-1,1\right\}\)suy ra \(n=\pm1\).
Thử lại đều thỏa mãn.
Vậy \(n=\pm1\).