\(n\in Z^+\)sao cho: \(n^4+\left(n+1\right)^4\)là hợp số<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

QUÊN TOÁN 8

25 tháng 8 2019

1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố

TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)

=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)

9 tháng 5 2019

\(2n-3⋮n+1\Rightarrow2\left(n+1\right)-5⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;2;-4;6\right\}\)

9 tháng 5 2019

                                                              Bài giải

                                                2n-3 chia hết cho n+1

                                           => 2n+2-5 chia hết cho n+1

                                           => 2(n+1)-5 chia hết cho n+1

                                         Mà 2(n+1) chia hết cho n+1

                                          => 5 chia hết cho n+1

                                          => n+1 thuộc Ư(5) ={1;-1;5;-5}

                                    * TH1: n+1=1 => n=0 thuộc Z

                                    * TH2: n+1=1 => n=-2 thuộc Z

                                    *TH3: n+1=5 => n=4 thuộc Z

                                    * TH4: n+1=-5 => n=-6 thuộc Z

                                           => n thuộc {0;-2;4;6}

                                              Vậy n thuộc {0;-2;4;6}

                                          ~ Học tốt ~ K cho mk nha. Thanks.

25 tháng 1 2017

c) n2 + 404 = x2 (x thuộc N*)

=> x2 - n2 = 404

=> (x - n)(x + n) = 1.404 = 2.202 = 4.101

Mà x - n và x + n luôn cùng tính chẵn lẻ và x - n < x + n

=> x - n = 2; x + n = 202

=> n = (202 - 2) : 2 = 100

25 tháng 1 2017

a) Ta có: \(A=\left|x+2009\right|+\left|x-1\right|=\left|x+2009\right|+\left|1-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A\ge\left|x+2009+1-x\right|=\left|2010\right|=2010\)

Dấu " = " xảy ra khi \(x+2009\ge0;1-x\ge0\)

\(\Rightarrow x\ge-2009;x\le1\)

Vậy \(MIN_A=2010\) khi \(-2009\le x\le1\)

b) Giải:

Ta có: \(2n-1⋮n-4\)

\(\Rightarrow2n-8+7⋮n-4\)

\(\Rightarrow2\left(n-4\right)+7⋮n-4\)

\(\Rightarrow7⋮n-4\)

\(\Rightarrow n-4\in\left\{1;-1;7;-7\right\}\)

\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=7\\n-4=-7\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=11\\n=-3\end{matrix}\right.\)

Vậy \(n\in\left\{5;3;11;-3\right\}\)

14 tháng 7 2019

1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)

=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)

14 tháng 7 2019

Bài 2. Ta có: (3x - 5)100 \(\ge\)\(\forall\)x

       (2y + 1)100 \(\ge\)\(\forall\)y

=> (3x - 5)100 + (2y + 1)100 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)

Vậy ...

14 tháng 12 2017

1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)

Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)

Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)

Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)

Tại \(n-1=1\Leftrightarrow n=1+1=2\)

Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)

14 tháng 12 2017

2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)

Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)

Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)

Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)

Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)

10 tháng 3 2017

a) Ta có

\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)

=> 7\(⋮\) 2n + 3

Do n \(\in\) Z nên 2n + 3 \(\in\) Z

=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2

Ta có bảng

n 2n + 3 So với điều kiện n\(\in\) Z
-1 1 Thỏa mãn
2 7 Thỏa mãn
-2 -1 Thỏa mãn
-5 -7 Thỏa mãn

Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....