Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố
TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)
=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)
\(2n-3⋮n+1\Rightarrow2\left(n+1\right)-5⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;2;-4;6\right\}\)
Bài giải
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1
=> 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
* TH1: n+1=1 => n=0 thuộc Z
* TH2: n+1=1 => n=-2 thuộc Z
*TH3: n+1=5 => n=4 thuộc Z
* TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
Vậy n thuộc {0;-2;4;6}
~ Học tốt ~ K cho mk nha. Thanks.
c) n2 + 404 = x2 (x thuộc N*)
=> x2 - n2 = 404
=> (x - n)(x + n) = 1.404 = 2.202 = 4.101
Mà x - n và x + n luôn cùng tính chẵn lẻ và x - n < x + n
=> x - n = 2; x + n = 202
=> n = (202 - 2) : 2 = 100
a) Ta có: \(A=\left|x+2009\right|+\left|x-1\right|=\left|x+2009\right|+\left|1-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x+2009+1-x\right|=\left|2010\right|=2010\)
Dấu " = " xảy ra khi \(x+2009\ge0;1-x\ge0\)
\(\Rightarrow x\ge-2009;x\le1\)
Vậy \(MIN_A=2010\) khi \(-2009\le x\le1\)
b) Giải:
Ta có: \(2n-1⋮n-4\)
\(\Rightarrow2n-8+7⋮n-4\)
\(\Rightarrow2\left(n-4\right)+7⋮n-4\)
\(\Rightarrow7⋮n-4\)
\(\Rightarrow n-4\in\left\{1;-1;7;-7\right\}\)
\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=7\\n-4=-7\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=11\\n=-3\end{matrix}\right.\)
Vậy \(n\in\left\{5;3;11;-3\right\}\)
1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)
Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)
Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)
Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)
Tại \(n-1=1\Leftrightarrow n=1+1=2\)
Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)
2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)
Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)
Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)
Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
a) Ta có
\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)
=> 7\(⋮\) 2n + 3
Do n \(\in\) Z nên 2n + 3 \(\in\) Z
=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2
Ta có bảng
n | 2n + 3 | So với điều kiện n\(\in\) Z |
-1 | 1 | Thỏa mãn |
2 | 7 | Thỏa mãn |
-2 | -1 | Thỏa mãn |
-5 | -7 | Thỏa mãn |
Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm
Bài đầu đơn giản rồi , tự tính nhé <3
Bài 2
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\)
Vậy.....