Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 Tính :
a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)
\(=\frac{1}{n}\)
b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow C=1-B\left(1\right)\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
Lấy 2B trừ B ta có :
\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(B=1-\frac{1}{2^{10}}\left(2\right)\)
Thay (2) vào (1) ta có :
\(C=1-\left(1-\frac{1}{10}\right)\)
\(=1-1+\frac{1}{10}\)
\(=\frac{1}{10}\)
Vậy \(C=\frac{1}{10}\)
a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)
\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)
\(\Rightarrow5n=5\Rightarrow n=1\)
b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)
\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)
\(\Rightarrow1+n=2\Rightarrow n=1\)
c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)
\(\Rightarrow6+n=7\Rightarrow n=1\)
d)\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)
\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)
\(\Rightarrow n-1=5\Rightarrow n=6\)
e)\(243\ge3^n\ge9.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^4\)
\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)
f)\(2^{n+3}.2^n=128\)
\(\Rightarrow2^{n+3+n}=2^7\)
\(\Rightarrow2^{2n+3}=2^7\)
\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)
Hok tối
Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)
Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)
và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)
=>n - 2009 = 1 =>n = 2010
Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)
Vậy giá trị lớn nhất của A là 2011 khi n=2010
Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)
Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)
Ta có bảng sau:
n + 3 | 9 | -9 | 3 | -3 | 1 | -1 |
n | 6 | -12 | 0 | -6 | -2 | -4 |
a: \(\Leftrightarrow\left(-2\right)^n=\dfrac{128}{2}=64\)
hay n=6
b: \(\Leftrightarrow3^x\cdot\dfrac{7}{3}=7\cdot3^4\)
\(\Leftrightarrow3^x=3^5\)
hay x=5
a) \(5\frac{4}{23}.27\frac{3}{47}+4\frac{3}{47}\left(-5\frac{4}{23}\right)\)
\(=5\frac{4}{23}\left(27\frac{3}{47}-4\frac{3}{47}\right)\)
\(=5\frac{4}{23}\left(27+\frac{3}{47}-4-\frac{3}{47}\right)\)
\(=5\frac{4}{23}.23\)
\(=\frac{119}{23}.23=119\)
a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath
b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {1;5}
<=> n thuộc {0;4}