Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố
TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)
=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)
+) neu n=0 => 2\(^n\) +15 = 1+15= 16 ( la scp)
+) Neu n = 1 => 2\(^n\) +15 = 2+15=17 ( la scp)
+)Neu n\(\ge\) 2 => 2\(^n\) \(⋮\) 4
Ma 15 chia 4 du 3 => 2\(^n\) /4 du 3 => 2\(^n\) ko la SCP
Vay n = 0
\(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)
\(\Rightarrow2.\left(a-b\right).\left(a+b\right)+\left(a-b\right)=b^2\)
\(\Rightarrow\left(a-b\right).\left(2a+2b+1\right)=b^2\left(1\right)\)
Gọi \(d=ƯCLN ( a-b;2a+2b+1)\)
\(\Rightarrow a-b\) chia hết cho d và \(2a+2b+1\) chia hết cho d.
\(\Rightarrow b^2=\left(a-b\right).\left(2a+2b+1\right)\) chia hết cho \(d^2.\)
\(\Rightarrow b\) chia hết cho d.
Lại có: \(2.(a-b)-(2a+2b+1)\) chia hết cho d.
\(\Rightarrow d=-4b-1\) chia hết cho d.
\(\Rightarrow1\) chia hết cho d.
\(\Rightarrow d=1\)
\(\Rightarrow a-b\) và \((2a+2b+1)\) nguyên tố cùng nhau. ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(a-b\) và \(2a+2b+1\) là số chính phương. ( đpcm )
\(a:\dfrac{3}{5}\in N\Rightarrow3a⋮5\Rightarrow30a⋮50\)
\(a:\dfrac{10}{7}\in N\Rightarrow10a⋮7\Rightarrow30a⋮21\)
\(\Rightarrow30a⋮BCNN\left(50;21\right)\)
\(\Rightarrow39a⋮1050\)
\(\Rightarrow a⋮350\)
Mà a nhỏ nhất => a = 350
Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).
b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .
=> ( đpcm ).
xét n chia cho 3 dư 1 suy ra n=3q+1 (q là thương )
suy ra n^2=(3q+1)^2=(3q)^2+1^2+2.3q.1=9q^2+1+6q
ta có 9q^2+6q chia hết cho 3,mà 1 chia 3 dư 1
từ 2 điều trên suy ra n^2 chia 3 dư 1
xét n chia 3 dư suy ra n=3p+2 (p là thương)
suy ra n^2=(3p+2)^2=(3p)^2+2^2+2.3p.2=9p^2+4+12p
mà 9p^2+12p chia hết cho 3,mà 4 chia 3 dư 1
từ 2 điều trên suy ra n^2 chia 3 dư 1
vậy với mọi n thuộc N và n ko chia hết cho 3,n^2 luôn chia 3 dư 1
có chỗ nào ko hieu bn cứ hỏi mình,tab cho mình nếu đung nha
Lời giải:
Trước tiên ta sẽ chứng minh một bổ đề: Số chính phương lẻ chia $8$ dư $1$
--------------------
CM: Gọi số chính phương lẻ là $n^2$. Vì $n^2$ lẻ nên $n$ lẻ. Do đó $n$ có dạng $4k\pm 1$
$\Rightarrow n^2=(4k\pm 1)^2=16k^2\pm 8k+1$ chia $8$ dư $1$ (đpcm)
----------------------
Quay trở lại bài toán:
Đặt $a+1=m^2; 2a+1=n^2$ (trong đó $m,n$ là các số tự nhiên)
$\Rightarrow 2m^2=n^2+1$
$\Rightarrow n^2+1\vdots 2\Rightarrow n$ lẻ
$\Rightarrow n^2$ chia $8$ dư $1$
$\Rightarrow 2m^2=n^2+1$ chia $8$ dư $2$
$\Rightarrow m^2$ lẻ
$\Rightarrow a+1=m^2$ chia $8$ dư $1$
$\Rightarrow a\vdots 8(*)$
Mặt khác:
Một số chính phương lẻ khi chia $3$ có dư là $0$ hoặc $1$
Nếu $m^2$ chia hết cho $3$ thì $a+1\vdots 3\Rightarrow a$ chia $3$ dư $2$
$\Rightarrow n^2=2a+1$ chia $3$ dư $2$ (vô lý)
Do đó $m^2=a+1$ chia $3$ dư $1$
$\Rightarrow a\vdots 3(**)$
Từ $(*); (**)$ mà $(3,8)=1$ nên $a\vdots 24$
Số $n$ ở đâu ra vậy bạn?