K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Vì \(-6,123(456)\) là số thập phân vô hạn tuần hoàn nên không là số vô tỉ

\( - \sqrt 4  =  - 2\) không là số vô tỉ

\(\sqrt {\frac{4}{9}}  = \frac{2}{3}\) không là số vô tỉ

\(\sqrt {11} \) là số vô tỉ vì không thể viết được dưới dạng \(\dfrac{a}{b}(a,b \in \mathbb{Z},b \ne 0)\)

\(\sqrt {15} \) là số vô tỉ vì không thể viết được dưới dạng \(\dfrac{a}{b}(a,b \in \mathbb{Z},b \ne 0)\)

Vậy trong các số trên có \(\sqrt {11};\sqrt {15} \) là số vô tỉ

Chú ý:

Căn bậc hai của một số nguyên tố luôn là số vô tỉ

4 tháng 11 2018

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có: \(3,\left( {45} \right) = \frac{{38}}{{11}}\); \( - 45 = \frac{{ - 45}}{1};\,\,0 = \frac{0}{1}\) do đó:

Các số hữu tỉ là: \(\frac{2}{3};\,3,\left( {45} \right);\, - 45;\,0\).

Các số vô tỉ là: \(\sqrt 2 ;\, - \sqrt 3 ;\,\pi \).

Chú ý:

Số thập phân vô hạn tuần hoàn cũng là số hữu tỉ.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(B = \left\{ {7,1; - 2,(61);0;5,14;\frac{4}{7}; - \sqrt {81} } \right\}\)

\(C = \left\{ {\sqrt {15} } \right\}\)

Chú ý:

Số \( - \sqrt {81} \) là số hữu tỉ vì \( - \sqrt {81} =-9\)

22 tháng 10 2016

a) 1,(3) = 10+(3-1)/9 =12/9 = 4/3

...................

b) chẳng hiu dau bai

c) = 5 ; =7 ; = 10

22 tháng 10 2016

hình như b hỏi \(\sqrt{49}\) bằng mấy ă bn Linh

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm

\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu

\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai

b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)

Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)

Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

2 tháng 10 2015

chọn A. Vì \(\frac{1}{\sqrt{4}}=\frac{1}{2}\) là số hữu tỉ

2 tháng 10 2015

A vì căn 2 của 4 là 2 

24 tháng 5 2016

\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)

\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)

Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)

Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).