K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

7x² + 13y² = 1820

<=> 7x² = 1820 - 13y² (*)

Ta có 7x² ≥ 0 với mọi x,nên để pt có nghiệm thì: 1820 - 13y² ≥ 0

<=> 13y² ≤ 1820 <=> y² ≤ 140

<=> -√140 ≤ y ≤ √140 hay -11,8 ≤ y ≤ 11,8

Do y ε Z => y = { -11 ; -10 ; -9 ; ... ; 9 ; 10 ; 11}

▪ y = -11, thay vào (*) ta có : x² = 247/7 --> loại
▪ .... --> loại
▪ y = -7 ,thay vào (*) => x² = 169 <=> x = ±13
▪ .... --> loại
▪ y = 7 ,thay vào (*) => x² = 169 <=> x = ±13
▪ .... --> loại
▪ y = 11, thay vào (*) ta có : x² = 247/7 --> loại

Vậy các nghiệm nguyên của phương trình là :

( x ; y ) = ( 13 ; 7 ) ; ( 13 ; -7 ) ; ( -13 ; 7 ) ; ( -13 ; -7 )

2 tháng 1 2019

Ta có 7x2⋮7

1820⋮7

Vậy để phương trình \(7x^2+13y^2=1820\) có nghiệm nguyên thì 13y2⋮7⇔y2⋮7 (vì (13;7)=1) (1)

Ta lại có \(7x^2+13y^2=1820\Leftrightarrow7x^2=1820-13y^2\ge0\Leftrightarrow13y^2\le1820\Leftrightarrow y^2\le140\left(2\right)\)(2)

Ta lại có y2 là số chính phương (3)

Từ (1),(2),(3)\(\Rightarrow y^2=49\Leftrightarrow\)\(y=\pm7\Leftrightarrow x=\pm13\)

Vậy phương trình có 4 nghiệm (x;y)={(7;13);(-7;-13);(-7;13);(7;-13)}

8 tháng 12 2018

Giả sử x;y là các số nguyên thỏa mãn phương trình 2x + 13y = 156

2x + 13y = 156 ⇒ 2x = 156 - 13y

Ta nhận thấy 13y và 156 đều chia hết cho 13.

Do đó 2x ⋮ 13

Đặt x = 13t (t ∈ Z) thay vào phương trình ta được:

2.13t + 13y = 156 ⇔ 26t + 13y = 156 ⇔ 2t + y = 12 ⇔ y = - 2t + 12

Vậy nghiệm nguyên của phương trình là (x = 13t; y = - 2t + 12) (với t ∈ Z)
11 tháng 11 2021

123456789-44444444444444444444444444445

11 tháng 11 2021

a) 5x−13y=7⇔y=5x−713=5x+5−13135x−13y=7⇔y=5x−713=5x+5−1313
=5(x+1)13−1=5(x+1)13−1(1)
đật x+1=13t⇔x=13t−1(t−thuoc−Z)x+1=13t⇔x=13t−1(t−thuoc−Z)
thay vào (1) ta có y=5t−1(t−thuoc−Z)y=5t−1(t−thuoc−Z)
b) 6x−5y=−38⇔x=5y−386=5y+10−4866x−5y=−38⇔x=5y−386=5y+10−486
=5(y+2)6−8=5(y+2)6−8(1)
đặt y+2=6t⇔y=6t−2(t−thuoc−Zy+2=6t⇔y=6t−2(t−thuoc−Z(2)
vì y>0⇒t>13y>0⇒t>13(3)
thay (2) vào (1) ta có;
x=5t−8x=5t−8vì x<0⇒t<85(t−thuoc−Z)x<0⇒t<85(t−thuoc−Z)(4)
từ (3),(4) 13<t<8513<t<85
mà t thuôc Z nên t=1
với t= 1 thì x=-3,y=4

20 tháng 3 2021

a) Ta có

2x+13y=1562x+13y=156

\(\Leftrightarrow\)13y=156−2x\(\Leftrightarrow\)13y=156−2x

\(\Leftrightarrow\)y=156−2x13<−>y=156−2x13

Để yy nguyên thì 156−2x156−2x phải chia hết cho 13.

Lại có 156−2x=2(78−x)156−2x=2(78−x). Do đó là số chẵn.

Vậy 156−2x∈B(13)={26,52,78,104,130,156}156−2x∈B(13)={26,52,78,104,130,156}

Do đó x∈{65,52,39,26,13,0}

1 tháng 2 2019

Ta có:\(7⋮7\Rightarrow7x^2⋮7;714⋮7\)

\(\Rightarrow3y^2⋮7\)

Mà \(\left(3,7\right)=1\Rightarrow y^2⋮7\Rightarrow y^2⋮49\)(tính chất số chính phương)

Lại có:\(3y^2\le714\Rightarrow y^2\le238\)

\(\Rightarrow y^2\in\left\{49;196\right\}\)vì y là số chính phương

Với \(y^2=49\Rightarrow\orbr{\begin{cases}y=7\Rightarrow x=\pm9\\y=-7\Rightarrow7x^2=567\Rightarrow x^2=81\Rightarrow x=\pm9\end{cases}}\)

tương tự với \(y^2=196\)nhé

2 tháng 2 2019

Đệ hãu giải thích tính chất scp

9 tháng 10 2020

Với \(y\ne\frac{7}{2}\)(Do y nguyên) thì\(y^2+2xy-7x-12=0\Leftrightarrow x\left(7-2y\right)=y^2-12\Leftrightarrow x=\frac{y^2-12}{7-2y}\)

Vì x nguyên nên \(\frac{y^2-12}{7-2y}\)nguyên \(\Rightarrow y^2-12⋮2y-7\Rightarrow4y^2-48⋮2y-7\Rightarrow\left(2y-7\right)^2+14\left(2y-7\right)+1⋮2y-7\Rightarrow1⋮2y-7\)\(\Rightarrow2y-7\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow\orbr{\begin{cases}2y-7=-1\\2y-7=1\end{cases}}\Rightarrow\orbr{\begin{cases}y=3\\y=4\end{cases}}\)

* Với y = 3 thì x = -3

* Với y = 4 thì x = -4

Vậy phương trình có 2 cặp nghiệm nguyên (x; y) = (-3; 3) ; (-4; 4)

18 tháng 10 2020

Giúp mình bài này với nhé: tìm GTNN của thương của phép chia (4x^5+4x^4+4x^3-x-1):(2x^3+x-1), nhớ là đặt phép chia giùm mình luôn đừng ghi kết quả thôi nhé 

3 tháng 8 2017

Ta có  \(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)

\(\Leftrightarrow\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)

\(\Leftrightarrow\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)

\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)=0\Leftrightarrow x+15=0\)vì \(\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)\ne0\)

\(\Leftrightarrow x=-15\)

Vậy \(x=-15\)

17 tháng 1 2018

giải pt: (x-20)+(x-19)+......+100+101=101