\(x^2+13y^2-2xy-11y-x+2017,25\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

\(A=x^2+13y^2-2xy-11y-x+2017,25\)

\(=\left[x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}\right]+13y^2-\frac{\left(2y+1\right)^2}{4}+2017,25\)

\(=\left(x-\frac{2y+1}{2}\right)^2+12\left(y-\frac{1}{2}\right)^2+2014\ge2014\)

Dấu "=" xảy ra khi y = 1/2 và x = 1

Vậy ...........................................................

19 tháng 10 2016

cảm ơn :)

5 tháng 10 2019

\(N^2\le2\left(20x^2+11y^2\right)=4016\)\(\Leftrightarrow\)\(-4\sqrt{251}\le N\le4\sqrt{251}\)

\(\hept{\begin{cases}N_{min}=-4\sqrt{251}\left(x=-\sqrt{\frac{251}{5}};y=-\sqrt{\frac{1004}{11}}\right)\\N_{max}=4\sqrt{251}\left(x=\sqrt{\frac{251}{5}};y=\sqrt{\frac{1004}{11}}\right)\end{cases}}\)

30 tháng 8 2017

Ta có:

\(A=\frac{2x^2+y^2-2xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+x^2+2xy-3y^2}{xy}=\frac{\left(x-2y\right)^2+x^2+2xy-3y^2}{xy}\)

\(=\frac{\left(x-2y\right)^2}{xy}+\frac{x}{y}+2+\frac{-3y}{x}\ge0+2+2+\frac{-3}{2}=\frac{5}{2}\)

Vậy minA = \(\frac{5}{2}\)khi x = 2y.

10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=

5 tháng 6 2017

Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)

5 tháng 6 2017

khó was

9 tháng 10 2017

Lời giải:

\(A=3x^2+11y^2-2xy-2x+6y-1\)

\(\Leftrightarrow A=\left(x^2+y^2+\frac{1}{4}-2xy-x+y\right)+2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+10\left(y^2+\frac{1}{2}y+\frac{1}{16}\right)-2\)

\(\Leftrightarrow A=\left(x-y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{4}\right)^2+10\left(y+\frac{1}{4}\right)^2-2\)

Thấy rằng \(\hept{\begin{cases}\left(x-y-\frac{1}{2}\right)^2\ge0\\\left(x-\frac{1}{4}\right)^2\ge0\\\left(y+\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow A\ge-2\)

Vậy \(A_{min}=-2\Leftrightarrow\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{4}=0\\y+\frac{1}{4}=0\end{cases}\Leftrightarrow x=\frac{1}{4};y=\frac{-1}{4}}\)