K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Lời giải:

\(A=3x^2+11y^2-2xy-2x+6y-1\)

\(\Leftrightarrow A=\left(x^2+y^2+\frac{1}{4}-2xy-x+y\right)+2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+10\left(y^2+\frac{1}{2}y+\frac{1}{16}\right)-2\)

\(\Leftrightarrow A=\left(x-y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{4}\right)^2+10\left(y+\frac{1}{4}\right)^2-2\)

Thấy rằng \(\hept{\begin{cases}\left(x-y-\frac{1}{2}\right)^2\ge0\\\left(x-\frac{1}{4}\right)^2\ge0\\\left(y+\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow A\ge-2\)

Vậy \(A_{min}=-2\Leftrightarrow\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{4}=0\\y+\frac{1}{4}=0\end{cases}\Leftrightarrow x=\frac{1}{4};y=\frac{-1}{4}}\)

10 tháng 12 2016

\(3y^2+x^2+2xy+2x+6y+2017=x^2+2x\left(y+1\right)+\left(y+1\right)^2+\left(2y^2+4y+2\right)+2014\)

\(=\left(x+y+1\right)^2+2\left(y+1\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy BT đạt GTNN bằng 2014 tại (x;y) = (0;-1)

24 tháng 3 2017

P=3x2+11y2-2xy-2x+6y-1=(x2+9y2-6xy)-2(x-3y)+1+2x2+2y2+4xy -2

=(x-3y-1)2+2(x+y)2-2\(\ge-2\)

MinP=-2 khi x=1/4 và y=-1/4

5 tháng 8 2016
GTNN là -17 khi x=3;y=4
29 tháng 9 2017

Ta thấy x2x2 và y2y2 luôn lớn hơn hoặc bằng 0 với mọi x

Nên để A đạt GTNN thì x = 0 và y = 0, do đó A = 0 + 0 - 0 + 0 - 0 = 0

Vậy Min A = 0

Còn cách khác nữa như sau :

Nhập biểu thức vào máy : 2x + 4y - 2xy + 2x - 10y = 0 SHIFT SOLVE

     Y? 0 =

Solve for X? 0 =

KQ ra Solve x = 0

Vậy Min A = 0 khi x = 0 và y = 0.

19 tháng 10 2016

\(A=x^2+13y^2-2xy-11y-x+2017,25\)

\(=\left[x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}\right]+13y^2-\frac{\left(2y+1\right)^2}{4}+2017,25\)

\(=\left(x-\frac{2y+1}{2}\right)^2+12\left(y-\frac{1}{2}\right)^2+2014\ge2014\)

Dấu "=" xảy ra khi y = 1/2 và x = 1

Vậy ...........................................................

19 tháng 10 2016

cảm ơn :)