K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

a) Check lại đề

b) Cho \(g\left(x\right)=x^2-4=0\)

\(\Rightarrow x^2=0+4=4\)

\(\Rightarrow x=\pm2\)

Vậy g (x) có 2 nghiệm là x = 2 và x = -2

c) Cho \(h\left(x\right)=x^2-16x=0\)

\(\Rightarrow x\left(x-16\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-16=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=0+16=16\end{matrix}\right.\)

Vây g (x) có 2 nghiệm là x = 0 và x = 16

d) Cho \(t\left(x\right)=x^2+8x=0\)

\(\Rightarrow x\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+8=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=0-8=-8\end{matrix}\right.\)

Vậy t (x) có 2 nghiêm là x = 0 và x = -8

17 tháng 8 2020

a) \(f\left(x\right)=6+12=18=0\)(vô lý)

Nên đa thức trên vô nghiệm

\(b,g\left(x\right)=x^2-4=0\\ \Leftrightarrow x^2=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy đa thức trên có 2 nghiệm là x=2 ; x= -2

\(c,h\left(x\right)=x^2-16x=0\\ \Leftrightarrow x\left(x-16\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy...

\(d,t\left(x\right)=x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy...

31 tháng 5 2016

Câu 1:    a) x = 1 là nghiệm của đa thức f(x)

              b) x = -1 là nghiệm của đa thức g(x)

              c) x = 1 là nghiệm của đa thức h(x)

Câu 2: Số 1 là ngiệm của đa thức f(x)

11 tháng 4 2018

Giải:

a) Để đa thức có nghiệm

\(\Leftrightarrow x^2-64=0\)

\(\Leftrightarrow x^2=64\)

\(\Leftrightarrow x=\pm8\)

Vậy ...

d) Để đa thức có nghiệm

\(\Leftrightarrow x^2-81=0\)

\(\Leftrightarrow x^2=81\)

\(\Leftrightarrow x=\pm9\)

Vậy ...

h) Để đa thức có nghiệm

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow\left(x-6\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy ...

Các câu còn lại làm tương tự.

11 tháng 4 2018

a, x\(^2\) - 64 = 0

\(\Rightarrow\) x\(^2\) = 0 + 64

= 64

= 8\(^2\)

\(\Rightarrow\) x = 8

Vậy nghiệm của \(x^2-64\) là 8

d, \(x^2-81\) = 0

\(\Rightarrow\) x\(^2\) = 81

= 9\(^2\)

\(\Rightarrow\) x = 9

vậy nghiệm của \(x^2-81\) là 9

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

1 tháng 5 2018

1. Ta có :

f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0

f(x) = m - 1 - 3m + 2 = -2m + 1 = 0

\(\Rightarrow m=\frac{1}{2}\)

1 tháng 5 2018

2.

a) M(x) = -2x2 + 5x = 0 

\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)

b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0

N(x) = ( x + 2 ) . ( x - 1/2 ) = 0 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)

c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014

vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm

4 tháng 6 2020

a) 4x + 9 

Đa thức có nghiệm <=> 4x + 9 = 0

                               <=> 4x = -9

                               <=> x = -9/4

Vậy nghiệm của đa thức = -9/4

b) x2 - 9 = 0

Đa thức có nghiệm <=> x2 - 9 = 0

                               <=> x2 = 9

                               <=> x = 3 hoặc x = -3

Vậy nghiệm của đa thức là 3 và -3

c) x2 - x 

Đa thức có nghiệm <=> x2 - x = 0

                               <=> x(x - 1) = 0

                               <=> x = 0 hoặc x = 1 

Vậy nghiệm của đa thức là 0 và 1

d) (x-4)(x2+1)

Đa thức có nghiệm <=> (x-4)(x2+1) = 0

                               <=> x - 4 = 0 hoặc x2 + 1 = 0

                                     * x - 4 = 0 => x = 4

                                     * x2 + 1 = 0 => x2 = -1 ( vô lí )

                               <=> x = 4 

Vậy nghiệm của đa thức = 4

Bài làm

1) I = x.( 2 - x ) + 3( x - 2 )

Để đa thức trên có nghiệm

=> x.( 2 - x ) + 3( x - 2 ) = 0

=> x( 2 - x ) - 3( 2 - x ) = 0

=> ( 2 - x )( x - 3 ) = 0

=> \(\orbr{\begin{cases}2-x=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

Vậy x = 2 hoặc x = 3 là nghiệm phương trình.
2) K = x+ x+ x + 1

Để x+ x+ x + 1 có nghiệm

=> x+ x+ x + 1 = 0

=> x3( x + 1 ) + ( x + 1 ) = 0

=> ( x3 + 1 )( x + 1 ) = 0

=> \(\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x^3=-1\\x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=-1\end{cases}}}\)

Vậy x = -1 là nghiệm phương trình.
3) G = x100 - 8x97

Để phương trình x100 - 8x97 có nghiệm

=> x100 - 8x97 = 0

=> x97( x3 - 8 ) = 0

=> \(\orbr{\begin{cases}x^{97}=0\\x^3-8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x^3=8\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy x = 0 hoặc x = 2 là nghiệm phương trình. 

Lọ lại lp 7 tìm tòi thấy bài lm :>>

1, \(I=x\left(2-x\right)+3\left(x-2\right)=0\)

\(2x-x^2+3x-6=0\)

\(-x^2+5x-6=0\)

Nhân tài giải tiếp.

2, \(K=x^4+x^3+x+1=0\)

\(\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-1\end{cases}}\)

3, \(G=x^{100}-8x^{97}=0\)

\(x^{97}\left(x^3-8=0\right)\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)( con thề con ko chép của a Chết)