Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\)
Vậy đa thức F(x) không có nghiệm.
\(F\left(x\right)=x^2-x-x+2\)
\(\Leftrightarrow x^2-x-x+1+1\)
\(\Leftrightarrow x\left(x-1\right)-\left(x-1\right)+1\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)+1\)
\(\Leftrightarrow\left(x-1\right)^2+1>0\forall x\)
Vậy: ptrình vô nghiệm
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Lời giải:
a.
$|2x-5|=12-3x$
Nếu $x\geq \frac{5}{2}$ thì $2x-5=12-3x$
$\Leftrightarrow x=3,4$ (thỏa mãn)
Nếu $x< \frac{5}{2}$ thì: $5-2x=12-3x$
$\Leftrightarrow x=7$ (loại)
Vậy......
b.
$4x=|x+1|+|x+2|+|x+3|\geq 0$
$\Rightarrow x\geq 0$
Do đó: $|x+1|+|x+2|+|x+3|=(x+1)+(x+2)+(x+3)=3x+6$
Vậy: $3x+6=4x$
$\Leftrightarrow x=6$ (thỏa mãn)
c.
$|x^2+|x+2||=x^2+3$
$\Leftrightarrow x^2+|x+2|=x^2+3$
$\Leftrightarrow |x+2|=3$
$\Leftrightarrow x+2=3$ hoặc $x+2=-3$
$\Leftrightarrow x=1$ hoặc $x=-5$
d.
$|x^2-3|=6$
$\Leftrightarrow x^2-3=6$ hoặc $x^2-3=-6$
$\Leftrightarrow x^2=9$ (chọn) hoặc $x^2=-3< 0$ (loại)
$\Leftrightarrow x=\pm 3$
a: K(x)=0
=>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: K(x)=0
=>x(2x-5)(x+3)=0
=>x=0 hoặc 2x-5=0 hoặc x+3=0
=>x=0;x=5/2;x=-3
c: K(x)=0
=>x(x^2+4)(2x+1)=0
=>x(2x+1)=0
=>x=0 hoặc x=-1/2
d: G(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3
e: G(x)=0
=>x(x^2-25)=0
=>x(x-5)(x+5)=0
=>x=0;x=5;x=-5
Lời giải:
1.
$4x+9=0$
$4x=-9$
$x=\frac{-9}{4}$
2.
$-5x+6=0$
$-5x=-6$
$x=\frac{6}{5}$
3.
$x^2-1=0$
$x^2=1=1^2=(-1)^2$
$x=\pm 1$
4.
$x^2-9=0$
$x^2=9=3^2=(-3)^2$
$x=\pm 3$
5.
$x^2-x=0$
$x(x-1)=0$
$x=0$ hoặc $x-1=0$
$x=0$ hoặc $x=1$
6.
$x^2-2x=0$
$x(x-2)=0$
$x=0$ hoặc $x-2=0$
$x=0$ hoặc $x=2$
7.
$x^2-3x=0$
$x(x-3)=0$
$x=0$ hoặc $x-3=0$
$x=0$ hoặc $x=3$
8.
$3x^2-4x=0$
$x(3x-4)=0$
$x=0$ hoặc $3x-4=0$
$x=0$ hoặc $x=\frac{4}{3}$
\(f\left(x\right)\)= x2 + 2x = 0
\(\Rightarrow\)x(x+2) = 0
\(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy x=0 và x=-2 là nghiệm của phương trình
f (x) = 0
<=> x2 + 2x = 0
<=> x(x+2) = 0
<=>\(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)