K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2021

1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7

Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.

Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.

3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có: 

\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)

Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).

 

24 tháng 2 2018

help me

11 tháng 9 2020

Hệ \(\hept{\begin{cases}x^3+y^3+z^3=3\\x+y+z=3\end{cases}}\)

Ta có : x + y + z = 3

<=> x + y = 3 - z

<=> (x + y)^3 = (3 - z)^3

<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3

<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27

<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27

<=> 3xy(3 - z) + 9z(3 - z) = 24

<=> (3 - z)(xy + 3z) = 8 (*)

Vì x,y,z nguyên nên (*) tương tương với các hệ sau:

{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8

{ xy + 3z = 1 => xy = 1 - 3z = 16

=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4

{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8

{ xy + 3z = -1 => xy = - 1 - 3z = - 34

=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên

{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4

{ xy + 3z = 2 => xy = 2 - 3z = 5

=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm

{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4

{ xy + 3z = - 2 => xy = - 2 - 3z = -23

=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên

{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2

{ xy + 3z = 4 => xy = 4 - 3z = 1

=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1

{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2

{ xy + 3z = - 4 => xy = - 4 - 3z = - 19

=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên

{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1

{ xy + 3z = 8 => xy = 8 - 3z = 2

=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm

{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1

{ xy + 3z = - 8 => xy = - 8 - 3z = - 20

=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5

Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}

17 tháng 5 2017

Vì x3 +y3 +z3 =495 < 8=>1 \(\le x,y,z\le7\)

Áp dụng đẳng thức x3+y3+z3 + 3xyz = (x+y+z)(x2+y2+z2-xy-yz-xz)

=>x3+y3+z3 = (x+y+z)(x2+y2+z2-xy-yz-xz) - 3xyz

<=> 495 = 15 (x2+y2+z2-xy-yz-xz) - 3xyz

<=> 165 =  5(x2+y2+z2-xy-yz-xz) - xyz 

=>xyz chia hết cho 5 , vì \(\le x,y,z\le7\) và x,y,z có vai trò như nhau , ta giả sử x= 5 . Thay vào phương trình , ta suy ra

yz=21 và y+z=10 =>y=3 , z=7 hoặc z=3 , y=7 , do vai trò của x,y,z như nhau nên a tìm được (x,y,z) = (5,3,7) và các hoán vị


 

17 tháng 5 2017

\(x^3+y^3+z^3-3xyz\)

14 tháng 2 2016

Bài này có nghiệm bằng (x;y;z)=(1;1;1) thiếu dử kiện 

14 tháng 2 2016

biết kết quả nhưng ko biết làm

18 tháng 5 2017

Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)

Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)

\(\Rightarrow15=x+y+z\ge3z\)

\(\Leftrightarrow0< z\le5\)

Với \(z=1\) thì ta có

\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm

Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.

1 tháng 9 2023

Để tìm nghiệm nguyên của phương trình x(x+3) + y(y+3) = z(z+3) với x và y là số nguyên tố, ta có thể sử dụng phương pháp thử và sai hoặc sử dụng các thuật toán liệt kê các số nguyên tố và kiểm tra từng cặp giá trị (x, y). Tuy nhiên, do phương trình này là một phương trình bậc hai với hai biến, việc tìm nghiệm nguyên chính xác có thể rất khó khăn và tốn nhiều thời gian.

Một cách tiếp cận khác là sử dụng các công cụ toán học, như chương trình máy tính hoặc ngôn ngữ lập trình, để tìm nghiệm của phương trình này. Bằng cách lặp qua tất cả các giá trị nguyên tố cho x và y từ -N đến N (trong đó N là một giá trị lớn nào đó), ta có thể kiểm tra nếu tồn tại một giá trị nguyên tố z thỏa mãn phương trình. Tuy nhiên, quá trình này có thể tốn nhiều thời gian và tài nguyên tính toán.

Vì vậy, việc tìm nghiệm nguyên của phương trình này với x và y là số nguyên tố là một bài toán phức tạp và không có cách giải chính xác nhanh chóng.

1 tháng 9 2023

uhm cảm ơn bạn nhé