Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Với a, b, c > 0 ta có:
\(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)\(=\left(\frac{a}{b+c}+\frac{c}{d+a}\right)+\left(\frac{b}{c+d}+\frac{d}{a+b}\right)\)
\(=\)\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}+\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}\)\(\ge\frac{a^2+c^2+ad+bc}{\frac{1}{4}\left(a+b+c+d\right)^2}+\frac{b^2+d^2+ab+cd}{\frac{1}{4}\left(a+b+c+d\right)^2}\)\(=\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\) (Theo bất đẳng thức \(xy\le\frac{1}{4}\left(x+y\right)\))
Mặt khác:
\(2\left(a^2+b^2+c^2+d^2+ab+ad+bc+cd\right)-\left(a+b+c+d\right)^2\)
\(=a^2+b^2+c^2+d^2-2ac-2ad=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\)
* Áp dụng: \(\frac{2016}{x+y}+\frac{x}{y+2016}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)
\(\Rightarrow\)\(x=2015\), \(y=2016\)
\(\dfrac{2016}{x+y}+\dfrac{x}{y+2015}+\dfrac{y}{4031}+\dfrac{2105}{x+2016}=2\)
Đặt: (a;b;c;d)→(2016;x;y;2015)(a;b;c;d)→(2016;x;y;2015)
Phương trình trở thành:
∑ab+c=2∑ab+c=2
Đây chính là bất đẳng thức NesbitNesbit 4 biến.
Suy ra x=2015;y=2016x=2015;y=2016.
Đặt: (a; b; c; d) --> (2016; x; y; 2015)
Phương trình trở thành: \(\text{∑}\frac{a}{b+c}=2\)
=> x = 2015; y = 2016
đặt 2016=a;x=b;y=c;2015=d
pt trở thành:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=2\)
đến đấy là bđt nesbit 4 số,dễ rồi
mk mà đúng thì nhớ k cho mk nh bạn giải như vầy nè
Với x;y dương ta có:F=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\left(\frac{a}{b+c}+\frac{c}{d+a}\right)+\left(\frac{b}{c+d}+\frac{d}{a+b}\right)\)
=\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}\)+\(\frac{b\left(a+b\right)+d\left(d+c\right)}{\left(a+b\right)\left(d+c\right)}\)\(\ge\)\(\frac{a^2+c^2+ad+bc}{\frac{1}{4}\left(a+b+c+d\right)^2}\)+\(\frac{b^2+d^2+ab+cd}{\frac{1}{4}\left(a+b+c+d\right)^2}\)
=\(\frac{4\left(a^2+b^2+c^2+d^2+ab+ad+bc+cd\right)}{^{\left(a+b+c+d\right)^2}}\) (áp dụng bđt xy\(\le\frac{1}{4}\left(x+y\right)^2\))mặt khác có 2(\(a^2 +b^2+c^2+d^2+ab+ac+bc+cd\))-\(\left(a+b+c+d\right)^2\)=\(a^2+b^2+c^2+d^2-2ac-2bd\)=\(\left(a-c\right)^2+\left(b-d\right)^2\ge0\)suy ra F\(\ge\)2, dấu ''=''xảy ra khi và chỉ khi a=c ;b=d
Aps dụng với a=2016;b=x;c=y;d=2015ta có\(\frac{2016}{x+y}+\frac{x}{y+2015}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)
nên x; y cần tìm là 2015 và 2016
Bạn xem đề thử nguyên hay nguyên dương nhé. Nguyên dương thì còn thấy đường làm chứ nguyên thì bó tay.
b) \(x,y\ge1\Rightarrow xy\ge1\)
BĐT đã cho tương đương với:
\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow+\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
BĐT cuối luôn đúng nên ta có đpcm
Đẳng thức xảy ra khi x=y hoặc xy=1