K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

\(\cos^2=\frac{1}{1+tan^2x}=\frac{1}{1+25}\\ \Rightarrow cos=\frac{1}{\sqrt{26}}\left(6\pi< x< \frac{13}{2}\right)\)

\(\Rightarrow sin=\frac{5}{\sqrt{26}}\\ \Rightarrow sin2x=2sinxcosx=2\times\frac{5}{\sqrt{26}}\times\frac{1}{\sqrt{26}}=\frac{5}{13}\)

b) \(cos^2=1-sin^2x=\frac{16}{25}\\ \Rightarrow cos=-\frac{4}{5}\left(-\frac{3\pi}{2}< x< -\pi\right)\\\Rightarrow tanx=-\frac{3}{4} \\ tan\left(x-\frac{\pi}{4}\right)=\frac{tanx-tan\frac{\pi}{4}}{1+tanxtan\frac{\pi}{4}}=-7\)

3 tháng 5 2019

6π là số chẵn nên viết được dưới dạng k2π nên nó quay về mức 0 còn ​ \(\frac{13\pi}{2}=\frac{\pi}{2}+6\pi\) nên tóm lại nó lằm từ (0<x<\(\frac{\pi}{2}\))

NV
7 tháng 5 2019

\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)

\(=sinx+cosx-cosx=sinx\)

\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)

\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)

7 tháng 5 2019

Cho em ngay dòng đầu tiên của câu b ấy ạ, tại sao tách ra thế dược ạ ?

11 tháng 5 2020

Nhìn đề bài hãi quá :(

a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)

\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)

\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)

b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)

\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)

\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)

c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)

\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)

11 tháng 5 2020

d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)

\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)

\(D=-\tan x.\sin x.\cos x=-\sin^2x\)

e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)

\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)

\(E=-2\sin x\)

Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(

Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi

Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.

Còn tách mấy cái phân số như vầy:

Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)

Đó, thế là được :D

NV
22 tháng 6 2020

\(A=\frac{\frac{4sin^2x}{cos^2x}+\frac{5sinx.cosx}{cos^2x}+\frac{cos^2x}{cos^2x}}{\frac{sin^2x}{cos^2x}-\frac{2}{cos^2x}}=\frac{4tan^2x+5tanx+1}{tan^2x-2\left(1+tan^2x\right)}\)

\(=\frac{4.9-5.3+1}{9-2\left(1+9\right)}=...\)

NV
15 tháng 4 2019

\(=cos\left(4\pi+\pi+x\right)+sin\left(4\pi+\frac{\pi}{2}-x\right)-tan\left(\pi+\frac{\pi}{2}+x\right).cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(=cos\left(\pi+x\right)+sin\left(\frac{\pi}{2}-x\right)-tan\left(\frac{\pi}{2}+x\right).cot\left(\frac{\pi}{2}-x\right)\)

\(=-cosx+cosx-\left(-cotx\right).tanx\)

\(=1\)

NV
22 tháng 4 2020

\(P=cos\left(-x\right).tanx-cotx.\left(-cotx\right)\)

\(=cosx.tanx+cot^2x=sinx+cot^2x\)

\(=sinx+\frac{1}{1+sin^2x}=-\frac{1}{3}+\frac{1}{1+\frac{1}{9}}=\frac{17}{30}\)