Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+5=7^c\Leftrightarrow5=7^c-a\)
Thay \(a^3+5a^2+21=7^b\) ta được :
\(a^3\left(7^c-a\right)\times a^2+21=7^b\)
\(\Rightarrow a^3+7^c\times a^2-a^3+21=7^b\)
\(\Rightarrow7^c\times a^2+21=7^b\)
\(\Rightarrow7^b-7^c\times a^2=21\left(1\right)\)
\(\Rightarrow7^c\times\left(7^{b-c}-a^2\right)=21\left(2\right)\)
Từ (1) suy ra \(7^b>7^c\times a^2\Rightarrow b>c\)
\(\Rightarrow7^{b-c}\) nguyên
Mà : \(a^2\) nguyên
Từ đó suy ra \(7^{b-c}-a^2\) nguyên
Kết hợp với \(\left(2\right)\Rightarrow21⋮7^c\)
Mà : \(7^c\ge7\) do c nguyên dương nên \(7^c=7\)\(\Rightarrow c=1\)
Thay vào \(a+5=7^c\) ta được \(a+5=7^1\Leftrightarrow a+5=7\Leftrightarrow a=2\)
Thay c =1 ; a=2 vào (2) ta có :
\(7^1\times\left(7^{b-1}-2^2\right)=21\)
\(\Rightarrow7^{b-1}-4=3\)
\(\Rightarrow7^{b-1}=7\)
\(\Rightarrow b-1=1\)
\(\Rightarrow b=2\)
Vậy a = 2 ; b = 2 ; c = 1
b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)
không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:
\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)
\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)
\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)
ĐCĐK và kết luận
Vậy (1;1;13);(13;1;1);(1;13;1)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Bài 2:
a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)
\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: a=0
=>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Trường hợp 2: a<>0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)
b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)
Trường hợp 1: a=0
Phương trình sẽ là 2x+5=0
hay x=-5/2
Trường hợp 2: a<>0
Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)