Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10, \(5x^3+11y^3=-13z^3\)
\(\Rightarrow5x^3+11y^3⋮13\)
\(\Rightarrow x,y⋮13\)
\(\Rightarrow z⋮13\)
Đến đây dùng lùi vô hạn nhé
4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z
+) TH1: x = 0; y = 0 => z = 2 (tm)
+) TH2: x = 0; y = 1=> z = 2(tm)
+) Th3: x= 1; y = 0 => z = 2(tm)
+) TH4: x = 1; y= 1 => z = 2 (tm)
+) TH5: y > 1
với \(x\le y\)
Khi đó: x! = 1.2.3...x;
y! = 1.2.3...x.(x+1)...y
z! = 1.2.3....x.(x+1)...y(y+1)...z
Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z
<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1
<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1
Với \(y\le x\)cũng làm tương tự và loại'
Vậy:...
1,Thực hiện phép tính :
a, (x + 2)9 : (x + 2)6
=(x+2)9-6
=(x+2)3
b, (x - y) 4 : (x - 2)3
=(x-y)4-3
=x-y
c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)
=(x2+2x+4)5-1
=(x2+2x+4)4
d, 2(x2 + 1)3 : 1/3(x2 + 1)
=(2÷1/3).[(x2+1)3÷(x2+1)]
=6(x2+1)2
e, 5 (x - y)5 : 5/6 (x - y)2
=(5÷5/6).[(x-y)5÷(x-y)2]
=6(x-y))3
a ) \(\dfrac{x-y}{x^3+y^3}.Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}:\dfrac{x-y}{x^3+y^3}\)
\(\Leftrightarrow Q=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\cdot\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x-y}\)
\(\Rightarrow Q=\left(x-y\right)\left(x+y\right)=x^2-y^2\)
Vậy \(Q=x^2-y^2\)
b ) \(\dfrac{x+y}{x^3-y^3}.Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}:\dfrac{x+y}{x^3-y^3}\)
\(\Leftrightarrow Q=\dfrac{3x\left(x+y\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x+y}\)
\(\Leftrightarrow Q=3x\left(x-y\right)=3x^2-3xy\)
Vậy \(Q=3x^2-3xy\)
1/ a/ \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)\left(x^2+2xy+b^2\right)=x^3+2x^2y+x^2y+xy^2+2xy^2+y^3=x^3+3x^2y+3xy^2+y^3\)
b/ \(\left(x-y\right)^3=\left(x-y\right)\left(x-y\right)^2=\left(x-y\right)\left(x^2-2xy+y^2\right)=x^3-2x^2y-x^2y+2xy^2+xy^2-y^3=x^3-3x^2y+3xy^2+y^3\)2/
a/ \(x\left(8x-2\right)-8x^2+12=0\)
\(\Leftrightarrow8x^2-2x-8x^2+12=0\)
\(\Leftrightarrow-2x+12=0\)
\(\Leftrightarrow x=6\)
Vậy ...
b/ \(\left(x-1\right)^3-x\left(x^2-3x+1\right)=18\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+3x^2-x=18\)
\(\Leftrightarrow2x-1=18\)
\(\Leftrightarrow x=\dfrac{19}{2}\)
Vậy...
3/ a, \(25-x^2=5^2-x^2=\left(5-x\right)\left(5+x\right)\)
b/ \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)
c/ \(9x^2+6xy+y^2=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
a,
\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)
\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)