K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

`7x^2+7x=\sqrt{(4x+9)/28}`
Nhân 2 vế của pt cho 28 ta có:
`196x^2+196x=2\sqrt{28x+63}`
`<=>196x^2+224x+64=28x+63+2\sqrt{28x+63}+1`
`<=>(14x+8)^2=(\sqrt{28x+63}+1)^2`
Đến đây chai 2 trường hợp rồi giải thôi :D

18 tháng 5 2016

x^2 + 7x = căn[(4x+9)/28] (1) 
<=> 7(x+1/2)^2 - 7/4 = căn[(4x+9)/28] 
Đặt căn[(4x+9)/28] = y + 1/2 (2) 
<=> 7y^2 + 7y = x+1/2 (bình phương 2 vế rồi thu gọn) (3) 
Mặt khác thay (2) vào (1) ta được: 7x^2 + 7x = y +1/2 (4) 
Lấy (3)-(4), ta có: 7(x-y)(x+y+1)=-(x-y) <=>(x-y)(7x+7y+8)=0 
<=> x-y =0 (vì 7x+7y+8 >0) 
<=> x=y

18 tháng 5 2016

cảm ơn !

7x2+7x=√4x+9287x2+7x=4x+928

⇔7(x+12)2−74=√17(x+12)+14⇔7(x+12)2−74=17(x+12)+14

Đặt √17(x+12)+14=y17(x+12)+14=y

Khi đó, ta có hệ đối xứng loại (II) như sau:

{7y2−(x+12)=747(x+12)2−y=74{7y2−(x+12)=747(x+12)2−y=74

Đến đây bạn làm tiếp được rồi :)

20 tháng 2 2016

cái này mình không biết làm nhưng mình bấm máy tính ra x=0,0765048437..

16 tháng 4 2017

mik tự trả lời nhé (đương nhiên ko tick nha giải cho mn hỉu thoy =))

C1: đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\)

=>\(\dfrac{4x+9}{28}=y^2+y+\dfrac{1}{4}\Leftrightarrow7y^2+7y=x+\dfrac{1}{2}\)

kết hợp vs pt đầu ta được hpt đối xứng \(\left\{{}\begin{matrix}7x^2+7x=y+\dfrac{1}{2}\\7y^2+7y=x+\dfrac{1}{2}\end{matrix}\right.\)

(mời @Neet giải tip nha mỏi tay )

C2:

pt <=> \(28\left(49x^4+98x^3+49x^2\right)=4x+9\)

<=>\(\left(14x^2+12x-1\right)\left(98x^2+112x+9\right)=0\)

=> do yourself !!!

17 tháng 4 2017

đó,mình k hiểu cái chỗ đặt ẩn tại sao lại là y+1/2 thay vì y ?

còn cách 2 làm thế nào để pt thành nhân tử z ,god explain jum ( :hóng)

13 tháng 5 2015

đặt căn =y+1/2 nhé bác ! bác có rảnh giúp e con này với cho a,b,c,d >0 thỏa mãn : a+b+c+d<=2 ,a^2+b=b^2=a,  c^2+d=d^2+c  ! chứng minh là a^2004+b^2004=c^2004+d^2004 ! hay bác thấy dạng tương tự giúp e với

29 tháng 6 2017

a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)

\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)

\(\Leftrightarrow9x-\left|7x+5\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow x=6\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)

b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)

\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)

\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)

\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)

\(\Leftrightarrow-5=21-8\sqrt{x+5}\)

\(\Leftrightarrow8\sqrt{x+5}=21+5\)

\(\Leftrightarrow8\sqrt{x+5}=26\)

\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)

\(\Leftrightarrow x+5=\dfrac{169}{16}\)

\(\Leftrightarrow x=\dfrac{169}{16}-5\)

\(\Leftrightarrow x=\dfrac{89}{16}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)

30 tháng 6 2017

Nick cũ không đi giải lấy nick mới giải làm gì vậy Tuấn Anh Phan Nguyễn ? :D

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

14 tháng 4 2017

Đề bị lỗi không biết cái đề ghi gì trong đó nữa

14 tháng 4 2017

câu 1:

từ giả thiết\(\Rightarrow\sqrt{x+1}+\sqrt{2-y}=\sqrt{y+1}+\sqrt{2-x}\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{2-y}-\sqrt{2-x}\right)=0\)

\(\Leftrightarrow\dfrac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{2-y-2+x}{\sqrt{2-y}+\sqrt{2-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)

hiển nhiên trong ngoặc lớn khác 0 nên x=y thay vào 1 trong 2 phương trình đầu tính (nhớ ĐKXĐ đấy )

câu 2:

chịu

câu 3:

đánh giá: ta luôn có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

chứng minh: bất đẳng thức trên tương đương \(\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)(luôn đúng )

dấu = xảy ra khi \(x=y=z=\dfrac{2016}{3}=672\)