\(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)

\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)

\(\Leftrightarrow9x-\left|7x+5\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow x=6\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)

b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)

\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)

\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)

\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)

\(\Leftrightarrow-5=21-8\sqrt{x+5}\)

\(\Leftrightarrow8\sqrt{x+5}=21+5\)

\(\Leftrightarrow8\sqrt{x+5}=26\)

\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)

\(\Leftrightarrow x+5=\dfrac{169}{16}\)

\(\Leftrightarrow x=\dfrac{169}{16}-5\)

\(\Leftrightarrow x=\dfrac{89}{16}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)

30 tháng 6 2017

Nick cũ không đi giải lấy nick mới giải làm gì vậy Tuấn Anh Phan Nguyễn ? :D

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

15 tháng 10 2021
20 tháng 8 2018

a) điều kiện xác định \(x-2\ge0vàx^2-4x+3\ge0\)

\(pt\Leftrightarrow x^2-4x+3=x-2\Leftrightarrow x^2-5x+5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{2}\\x=\dfrac{5-\sqrt{5}}{2}\left(L\right)\end{matrix}\right.\) bạn giải nó bằng cách giải den ta nha .

vậy \(x=\dfrac{5+\sqrt{5}}{2}\)

b) điều kiện xác định : \(x\ge1\)

đặc \(\sqrt{x-1}=t\left(t\ge0\right)\)

\(pt\Leftrightarrow2\left(\dfrac{t}{2}-3\right)=\dfrac{2.2t}{3}-\dfrac{1}{3}\) giải phương trình này rồi thế ngược lại là xong

c) điều kiện xác định : \(x\ge\dfrac{7}{9}\)

\(pt\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\) vậy \(x=6\)

d) câu cuối chờ nhát h mk chưa nghỉ ra

20 tháng 8 2018

d) Ta có pt \(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}=0\)

\(\Leftrightarrow4+\sqrt{2x-3-6\sqrt{2x-3}+9}=\sqrt{2x-3-2\sqrt{2x-3}+1}\Leftrightarrow4+\left|\sqrt{2x-3}-3\right|=\left|\sqrt{2x-3}-1\right|\)

Đặt \(\sqrt{2x-3}=a\left(a\ge0\right),pt\Leftrightarrow4+\left|a-3\right|=\left|a-1\right|\)

xét \(a\ge3,pt\Leftrightarrow4+a-3=a-1\Leftrightarrow0a=1\left(VN\right)\)

xét \(a\le1.pt\Leftrightarrow4+3-a=1-a\Leftrightarrow0a=6\left(VN\right)\)

xét \(3>x>1,pt\Leftrightarrow4+3-a=a-1\Leftrightarrow a=1\)(k thỏa mãn )

=> pt vô nghiệm !

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

26 tháng 6 2017

a, \(\sqrt{9x+9}-4\sqrt{\dfrac{x+1}{4}}=5\) \(x\ge-1\)

\(\Leftrightarrow3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow x+1=25\Leftrightarrow x=24\)

26 tháng 6 2017

2) "biểu thức"=\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\Leftrightarrow4\sqrt{x-5}=12\Leftrightarrow\sqrt{x-5}=3\Leftrightarrow x=14\)

Kl: x=14

3) "biểu thức"=\(4\sqrt{x-1}-3\sqrt{x-1}+\sqrt{x-1}=5\Leftrightarrow2\sqrt{x-1}=5\Leftrightarrow\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow x=\left(\dfrac{5}{2}\right)^2+1=\dfrac{29}{4}\)

Kl: x=29/4