
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

ta có: \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(4x^3-7x^2+3x-12\right)+\left(-2x^3+2x^2+12+5x^2-9x\right)\)
\(=\left(4x^3-2x^3\right)+\left(-7x^2+2x^2+5x^2\right)-\left(9x-3x\right)+\left(12-12\right)\)
\(=-6x\)
Cho P(x) + Q(x) = 0
=> -6x = 0
x = 0
KL: x = 0 là nghiệm của P(x) + Q(x)
Ta có :P(x)+Q(x)= 4x3-7x2+3x-12+(-2x3+2x2+12+5x2-9x)
=2x3-10x2-6x
Nghiệm của ĐT P(x)+Q(x) là giá trị thỏa mãn P(x)+Q(x)=0
<=> 2x3-10x2-6x=0
<=>2x(x2-5x-3)=0
<=>2x=0(*) hoặc x2-5x -3=0(**)
Từ (*) ta có : 2x=0 => x=0(1)
Từ (**) ta có : x2-5x-3=0 => x(x-5-3)=0
=>x=0 hoặc x-5-3=0 => x=0 hoặc x=8(2)
Từ (1) và (2) => x=0 và x=8 là nghiệm của P(x)+Q(x)

a) x3-x2+x-1=0
=>(x3-x2)+(x-1)=0
=>x2(x-1)+(x-1)=0
(x-1)(x2+1)=0
Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )
=>x-1=0
x=1
Vậy x=1 là nghiệm của f(x)
b)11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0
(x+1)[10(x2-x+1)+x2+4x]=0
(x+1)(11x2-6x+10)=0
(x+1)[(9x2-2.3x+1)+9]=0
(x+1)[(3x-1)2+2x2+9]=0
=>x+1=0
x=-1
Vậy -1 là nghiệm của y(x)
c)-17x3+8x2-3x+12=0

A(x)=x3+3x+6x4+18x2
A(x)=(x3+3x)+(6x4+18x2)
A(x)=x.(x2+3)+6x2.(x2+3)
A(x)=(x2+3)(x+6x2)=0
Có x2+3>0
=>x+6x2=0
=>x.(6x+1)=0
=>x=0 hoặc 6x+1=0
=>x=0 hoặc x=-1/6
A(x)=x( 6x\(^3\)+ x\(^2\)+ 18x + 3) =0
= x [ x2 (6x+1) + 3( 6x+1)]
=x(6x+1)( x2 +3)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{-1}{6}\end{cases}}\)
\(\Leftrightarrow\)

a) \(x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\Leftrightarrow x=1\end{cases}}\)
Vậy nghiệm của đa thức là \(x=0\)hoặc \(x=1\)
b)\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-2=0\Leftrightarrow x=2\end{cases}}\)
Vậy nghiệm của đa thức là \(x=0\)hoặc \(x=2\)
c) \(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-4=0\Leftrightarrow x=\frac{4}{3}\end{cases}}\)
Vậy nghiệm của đa thức là \(x=0\)hoặc \(x=\frac{4}{3}\)
a, Đa thức x^2 - x có nghiệm khi:
x^2 - x = 0
=> x.x - x.1 = 0
=> x( x - 1) = 0
=> x = 0 hoặc x - 1 = 0 => x = 1
b, Đa thức x^2 - 2x có nghiệm khi:
x^2 - 2x = 0
=> x.x - 2x = 0
=> x( x- 2) = 0
=> x = 0 hoặc x - 2 = 0 => x = 2
c, đa thức 3x^2 - 4x có nghiệm khi:
3x^2 - 4x = 0
=> 3.x.x - 4x = 0
=> x( 3x - 4) = 0
=> x = 0 hoặc 3x - 4 = 0 => x = 4/3
Q(x) = 3x2 - 12
Q(x) = 0 <=> 3x2 - 12 = 0
<=> 3x2 = 12
<=> x2 = 4
<=> x = 2 hoặc x = -2
Vậy nghiệm của Q(x) là 2 và -2
Q(x)=0
3x^2-12=0
3x^2=0+12
3x^2=12
X^2=12:3
X^2=4
x^2=2^2
X=2