K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

\(f\left(x\right)=\left(2x-3\right)\left(x^2-1\right)\)

Đa thức có nghiệm => \(\left(2x-3\right)\left(x^2-1\right)=0\)

=> \(\orbr{\begin{cases}2x-3=0\\x^2-1=0\end{cases}}\)

* 2x - 3 = 0 => 2x = 3 => x = 3/2

\(x^2-1=0\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x^2=1^2\\x^2=\left(-1\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy nghiệm của đa thức = { -1 ; 1 ; 3/2 }

\(f\left(x\right)=\left(2x-3\right)\left(x^2-1\right)=0\)

TH1 : 

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

TH2 : 

\(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy \(S=\left\{\frac{3}{2};\pm1\right\}\)

3 tháng 4 2016

a) Ta có: f(x)=-3

<=>x5-2x2+x4-x5+3x2-x4-3+2x=-3

<=>(x5-x5)+(-2x2+3x2)+(x4-x4)+2x-3=-3

<=>x2+2x-3=-3

<=>x2+2x=0

<=>x(x+2)=0

<=>x=0 hoặc x+2=0

<=>x=0 hoặc x=-2

Vậy..........

b)đa thức f(x) có nghiệm

<=>f(x)=0

<=>x2+2x-3=0

<=>x2+3x-x-3=0

<=>x(x+3)-(x+3)=0

<=>(x-1)(x+3)=0

<=>x-1=0 hoặc x+3=0

<=>x=1 hoặc x=-3

Vậy nghiệm của đa thức f(x) là x=-3;x=1

22 tháng 6 2019

a) \(f\left(x\right)=5x^3-7x^2+2x+5\)

\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)

\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)

\(\Rightarrow f\left(1\right)=5-7+7\)

\(\Rightarrow f\left(1\right)=5\)

Vậy f(1) = 5.

\(g\left(x\right)=7x^3-7x^2+2x+5\)

\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)

Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)

22 tháng 6 2019

\(h\left(x\right)=2x^3+4x+1\)

\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)

\(\Rightarrow h\left(0\right)=0+0+1\)

\(\Rightarrow h\left(0\right)=1\)

Vậy \(h\left(0\right)=1\)

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

9 tháng 4 2016

1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1

=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)

=2x + 1

b, f(x) - g(x) + h(x) = 0

<=> 2x + 1 = 0

<=> 2x = -1

<=> x = -1/2

Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)

2/ a, 5x + 3(3x + 7)-35 = 0

<=> 5x + 9x + 21 - 35 = 0

<=> 14x - 14 = 0

<=> 14(x - 1) = 0

<=> x-1 = 0 

<=> x = 1

Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35

b, x2 + 8x - (x2 + 7x +8) -9 =0

<=> x2 + 8x - x2 - 7x - 8 - 9 =0

<=> (x2 - x2) + (8x - 7x) + (-8 -9)

<=> x - 17 = 0

<=> x =17

Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9

3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5

<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5 

<=> -3x + 2 = x - 5

<=> -3x = x - 5 - 2 

<=> -3x = x - 7

<=>2x = 7

<=> x = 7/2 

Vậy f(x) = g(x) <=> x = 7/2

4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0

=>  4m + 4 + 4 = 0

=> 4m + 8 = 0

=> 4m = -8

=> m = -2

7 tháng 4 2017

mk ngại làm lắm

28 tháng 1 2020

a) \(F\left(x\right)=\left(2x^2-4x+5\right)-\left(x^2-6\right)+2x-3\)

\(=2x^2-4x+5-x^2+6+2x-3\)

\(=\left(2x^2-x^2\right)+\left(2x-4x\right)+\left(5+6-3\right)\)

\(=x^2-2x+8\)

Hệ số tự do của đa thức F(x) là: 8

Hệ số bậc 1 của đa thức F(x) là: -2

b) \(F\left(x\right)=x^2-2x+8\)\(G\left(x\right)=-x^2-2x-9\)

+) \(\Rightarrow F\left(x\right)+G\left(x\right)=\left(x^2-2x+8\right)+\left(-x^2-2x-9\right)\)

\(=\left(x^2-x^2\right)+\left(-2x-2x\right)+\left(8-9\right)=-4x-1\)

Vậy \(M\left(x\right)=-4x-1\)

+) và \(F\left(x\right)-G\left(x\right)=\left(x^2-2x+8\right)-\left(-x^2-2x-9\right)\)

\(=\left(x^2+x^2\right)+\left(-2x+2x\right)+\left(8+9\right)=2x^2+17\)

Vậy \(N\left(x\right)=2x^2+17\)

c)

+) M(x) có nghiệm khị và chỉ khi M(x) = 0

\(\Leftrightarrow-4x-1=0\Leftrightarrow-4x=1\Leftrightarrow x=\frac{-1}{4}\)

Vậy M(x) có 1 nghiệm là \(\frac{-1}{4}\)

+) N(x) có nghiệm khị và chỉ khi N(x) = 0

\(\Leftrightarrow2x^2+17=0\)

Mà \(2x^2+17\ge17\left(dox^2\ge0\right)\)

Nên N(x) vô nghiệm

d) F(x) = x2 - 3\(\Leftrightarrow x^2-2x+8=x^2-3\Leftrightarrow-2x=-11\)

\(\Leftrightarrow x=\frac{11}{2}\)

Vậy \(x=\frac{11}{2}\)thì  F(x) = x2 - 3