Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x+9=0\Leftrightarrow4x=-9\Leftrightarrow x=-\dfrac{9}{4}\)
b) \(-5x+6=0\Leftrightarrow5x=6\Leftrightarrow x=\dfrac{6}{5}\)
c) \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
d) \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
e) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
f) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
g) \(\left(x-4\right)\left(x^2+1\right)=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( do \(x^2+1\ge1>0\))
h) \(3x^2-4x=0\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
i) \(x^2+9=0\Leftrightarrow x^2=-9\)( vô lý do \(x^2\ge0>-9\))
Vậy \(x\in\left\{\varnothing\right\}\)
a , | 4x + 2020 | = 0
b , | 2x + 1/4 | + | -5 | = | -14 |
c , | 2020 - 5x | - | 3 | = - | -8 |
d , | x mũ 2 + 4x | = 0
e , | x-1 | + 3x = 1
g , | 2-3x | + 3x = 2
h , | 5x-4 | + 5x = 4
i , | x - 1/4 | - | 2x + 5 | = 0
k , | 5x - 7 | - | 8-5x | = 0
n , | x mũ 3 -
Lời giải:
1.
$4x+9=0$
$4x=-9$
$x=\frac{-9}{4}$
2.
$-5x+6=0$
$-5x=-6$
$x=\frac{6}{5}$
3.
$x^2-1=0$
$x^2=1=1^2=(-1)^2$
$x=\pm 1$
4.
$x^2-9=0$
$x^2=9=3^2=(-3)^2$
$x=\pm 3$
5.
$x^2-x=0$
$x(x-1)=0$
$x=0$ hoặc $x-1=0$
$x=0$ hoặc $x=1$
6.
$x^2-2x=0$
$x(x-2)=0$
$x=0$ hoặc $x-2=0$
$x=0$ hoặc $x=2$
7.
$x^2-3x=0$
$x(x-3)=0$
$x=0$ hoặc $x-3=0$
$x=0$ hoặc $x=3$
8.
$3x^2-4x=0$
$x(3x-4)=0$
$x=0$ hoặc $3x-4=0$
$x=0$ hoặc $x=\frac{4}{3}$
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
a) x2-x-6 =0
x2-3x+2x-6=0
(x2-3x)+(2x-6)=0
x(x-3)+2(x-3)=0
(x+2)(x-3)=0
=>x+2=0 hoặc x-3= 0
x = -2 x= 3
vậy x = -2 ,x= 3 là nghiệm của đa thức
b) 3x2+11x+6=0
3x2+9x+2x +6=0
3x(x+3)+2(x +3)=0
(3x+2)(x+3)=0
=> 3x+2=0 hoặc x+3=0
x = -2/3 x = -3
vậy x = -2/3 ,x = -3 là nghiệm của đa thức
a) Đặt A(x)=0
\(\Leftrightarrow-12x=-18\)
hay \(x=\dfrac{3}{2}\)
b) Đặt B(x)=0
\(\Leftrightarrow x^2=16\)
hay \(x\in\left\{4;-4\right\}\)
c) Đặt C(x)=0
\(\Leftrightarrow3x^2+12=0\)(Vô lý)
c. Ta có f(x) + g(x)
=(x3 - 2x2 + 2x - 5) + (-x3 + 3x2 - 2x + 4) = x2 - 1
Ta có x2 - 1 = 0 ⇒ x2 = 1 ⇒ x = 1,x = -1
Vậy nghiệm của đa thức h(x) là x = ±1 (1 điểm)
a)3x2+x=0
<=>x(3x+1)=0
<=>x=0 hoặc 3x+1=0
<=>x=0 hoặ x=-1/3
b)x2-x=0
<=>x(x-1)=0
<=>x=0 hoặ x-1=0
<=>x=0 hoặc x=1
c)x2-2x=0
<=>x(x-2)=0
<=>x=0 hoặc x-2=0
<=>x=0 hoặc x=2
a) \(3x^2+x=0\Leftrightarrow x\left(3x+1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=-\frac{1}{3}\)
b) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Rightarrow x=0\)hoặc \(x=1\)
c) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Rightarrow x=0\)hoặc \(x=2\)