K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

thiếu đề bạn ơi

18 tháng 2 2019

\(x^2+8x+25=x^2+4x+4x+16+9\)

\(=x\left(x+4\right)+4\left(x+4\right)+9=\left(x+4\right)^2+9>0\forall x\)

Vậy nghiệm của da thức là \(x\in\varnothing\)

7 tháng 4 2017

Bài 1:

\(f\left(x\right)=x^2+8x+25\)

Cho \(f\left(x\right)=0\Rightarrow x^2+8x+25=0\)

\(\Rightarrow x^2+8x+16+9=0\)

\(\Rightarrow\left(x+4\right)^2+9=0\)

Dễ thấy: \(\left(x+4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+4\right)^2+9\ge9>0\forall x\) ( vô nghiệm )

Vậy đa thức \(f\left(x\right)=x^2+8x+25\) không có nghiệm

Bài 2:

\(f\left(x\right)=x^{14}-14x^{13}+14x^{12}-...+14x^2-14x+14\)

\(f\left(x\right)=x^{14}-\left(13+1\right)x^{13}+\left(13+1\right)x^{12}-...+\left(13+1\right)x^2-\left(13+1\right)x+\left(13+1\right)\)

Do \(f\left(x\right)=13\) nên ta chỗ nào có \(13\) ta thay bằng \(x\)

\(f\left(13\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)

\(f\left(13\right)=x^{14}-x^{14}-x^3+x^{13}+x^{12}-...+x^3+x^2-x^2-x+x+1=1\)

Vậy \(f\left(13\right)=1\)

31 tháng 3 2016

              Giải

a)            8x - 16 x 2 = 0

       <=>  8x - 32 = 0

       <=>  8x = 32

       <=>    x = 4

b)           x2 - 81 = 0

       <=> x2  =  81

       <=> x = -9 hoặc x = 9.

c)           125 + x3 = 0

       <=>   x3 = -125

       <=>   x = -5

                 Đáp số:  a) x = 4

                              b) x = -9 hoặc x = 9

                              c) x = -5

29 tháng 4 2016

+)đặt f(x)=3x2-5x+2=0

3x2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

3x=2 hoặc x=1

x=2/3 hoặc x=1

29 tháng 4 2016

+)đặt f(x)=3x^2-5x+2=0

3x^2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

=>x=2/3 hoặc x=1

27 tháng 6 2024

2\(x^3\) - 8\(x^2\) + 9\(x\) = 0

\(x\)(2\(x^2\)  - 8\(x\) + 9) = 0

\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)

 2\(x^2\) - 8\(x\) + 9 = 0 

2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0

(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0

2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0

  2(\(x-2\))(\(x\) - 2) + 1 = 0

   2(\(x-2\))2 + 1 = 0 (vô  lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2  +1 ≥ 1 > 0

Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0

 

 

 

20 tháng 4 2015

mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm

 

12 tháng 4 2018

Ta có \(x^3+2x^2\left(4y-1\right)-4xy^2-9y^3-f\left(x\right)=-5x^3+8x^2y-4xy^2-9y^3\)

=> \(\left(x^3+8x^2y-2x^2-4xy^2-9y^3\right)-f\left(x\right)=-5x^3+8x^2y-4xy^2-9y^3\)

=> \(-f\left(x\right)=\left(-5x^3+8x^2y-4xy^2-9y^3\right)-\left(x^3+8x^2y-2x^2-4xy^2-9y^3\right)\)

=> \(-f\left(x\right)=-5x^3+8x^2y-4xy^2-9y^3-x^3-8x^2y+2x^2+4xy^2+9y^3\)

=> \(-f\left(x\right)=-6x^3\)

=> \(f\left(x\right)=6x^3\)

Khi f (x) = 0

=> \(6x^3=0\)

=> \(x^3=0\)(vì 6 \(\ne\)0)

=> x = 0

Vậy f (x) có 1 nghiệm là x = 0.

12 tháng 6 2017

1) a) 9x+2x-x=0

11x-x=0

10x=0

x=0

b) 25-9x=0

9x=25

x=25/9

2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)

\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)

\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)

mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm

12 tháng 6 2017

1)

a) Ta có :

9x + 2x - x = 0

( 9 + 2 - 1 )x = 0

10x = 0

x = 0 : 10

x = 0

Vậy x = 0 là nghiệm của đa thức 9x + 2x - x

b) Ta có :

25 - 9x = 0

9x = 25

x = 25 ; 9

x = 25/9

Vậy x = 25/9 là nghiệm của đa thức 25 - 9x

2. Ta có :

Vì x2 luôn > 0 với mọi giá trị của x

x4 luôn lớn hơn 0 với mọi giá trị x

1 > 0

Vậy x2 + x4 + 1 > với mọi giá trị x

Hay da thức x2 + x4 + 1 vô nghiệm

29 tháng 3 2018

Ta thay nghiệm x=-1 vào phương trình tổng quát được:

a(-1)2+b(-1) +c=0

=> a-b+c=0 hay a-b=-c  (đpcm)

Áp dụng: ta thấy: a=8 b=11 c=3, a-b+c= 8-11+3=0 

                             => phương trình có một nghiệm là x=-1 

<Mở rộng hơn nữa là phương trình dạng như trên có một nghiệm là -1 và nghiệm còn lại có dạng là -c/a>      

29 tháng 3 2018

thank bn nha!