Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
Giải
1) M(x) = -2x+3 ->-2x+3 =0
->x= 3/2
Vậy nghiệm của M(x) là 3/2
2) P(x) =ax+1 có nghiệm là -2
-> P(-2) =a*(-2)+1=0
-> a= 1/2
Vậy hệ số của P(x) là 1/2
Đặt `D=0`
`<=>2x+1=0`
`<=>2x=-1`
`<=>x=-1/2`
Vậy nghiệm của đa thức D là `-1/2`
Ta có:D=0
\(\Leftrightarrow\)2x+1=0
\(\Leftrightarrow\)2x=-1
x=\(\dfrac{-1}{2}\)
Vậy nghiệm đa thức D là :\(\dfrac{-1}{2}\)
a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1
a)
3x2−2x−1=0⇔(3x2−3x)+(x−1)=03x2−2x−1=0⇔(3x2−3x)+(x−1)=0
⇔(x−1)(3x+1)=0⇔⎡⎣x=1x=−13⇔(x−1)(3x+1)=0⇔[x=1x=−13
b)
⇔(x4−x2)+(4x2+4)=0⇔(x4−x2)+(4x2+4)=0
⇔x2(x2−1)−4(x2−1)=(x2−1)(x2−4)=0⇔x2(x2−1)−4(x2−1)=(x2−1)(x2−4)=0
⇔[x2−1=0x2−4=0⇔[x2−1=0x2−4=0 ⇔⎡⎢ ⎢ ⎢⎣x=−1x=1x=−2x=2
Nếu em coi không được thì em bấm vào link này nha!
Tìm nghiệm của đa thức 3x^2-2x-1 - Naru to
\(3x^2+2x-1=0\)
\(\Rightarrow3x^2-x+3x-1=0\)
\(\Rightarrow x\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)
Vậy nghiệm của đa thức là x=-1 và x=1/3
\(\)