K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

H(x) = 0 <=> \(\hept{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

             <=>\(\hept{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy H(x)=0 <=> x = 1;-1

NM
29 tháng 7 2021

\(H\left(x\right)=\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy Nghiệm của đa thức là -1 và 1

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

23 tháng 3 2022

a, \(P\left(1\right)=2-3-4=-5\)

b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)

c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)

\(x^2-x+1=0\)

\(\Leftrightarrow x^2-2x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)  (Vô nghiệm)

8 tháng 7 2021

\(h\left(x\right)=0\)

\(\Leftrightarrow x\cdot\left(x-1\right)+1=0\)

\(\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow x^2-2\cdot\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

PTVN

25 tháng 3 2019

a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3

          =1-2+(-4)+(-8)

          =-9

b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)

          =x4-2x2+4x+8x3-6-8x3+3x2+4x

          =x4+x2+8x-6

25 tháng 3 2019

t là nốt câu c):

Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.

23 tháng 4 2018

1/ Ta có H (x) có một nghiệm bằng 2

=> H (2) = 0

=> \(4a-2+1=0\)

=> \(4a-\left(2-1\right)=0\)

=> \(4a-1=0\)

=> \(4a=1\)

=> \(a=\frac{1}{4}\)

Vậy khi \(a=\frac{1}{4}\)thì H (x) có một nghiệm bằng 2.

2/

Ta có \(x^4\ge0\)với mọi giá trị của x

=> \(x^4+101>0\)với mọi giá trị của x

=> f (x) không có nghiệm (đpcm)

3/

Ta có \(g\left(1\right)=-2-7.1+8=-2-7+8=-9+8=-1\ne0\)

=> 1 không phải là nghiệm của đa thức g (x)

và \(g\left(3\right)=-2-7.3+8=-2-21+8=-23+8=-15\ne0\)

=> 3 không phải là nghiệm của đa thức g (x)

23 tháng 4 2018

2. Chứng minh f(x)=x4 + 101 không có nghiệm

Ta có:x4+101=0

=>x4=-101

=>phương trình vô nghiệm vì x4\(\ge\)0 mà -101<0

8 tháng 8 2016

đáp án của mình nè nếu đúng nhớ nhé

h(x)=x(x-1)+1

 h(x)=x^2-x +1

muốn tìm nghiệm của đa thức h(x) t cho h(x) =0 tương đương x^2 -x+1=0

rồi bạn tìm nghiệm nha

1: f(-1)=0 

=>1+m-1+3m-2=0 và 

=>4m-2=0

=>m=1/2

2: g(2)=0

=>2^2-4(m+1)-5m+1=0

=>4-5m+1-4m-4=0

=>-9m+1=0

=>m=1/9

4: f(1)=g(2)

=>1-(m-1)+3m-2=4-4(m+1)-5m+1

=>1-m+1+3m-2=4-4m-4-5m+1

=>2m-2=-9m+1

=>11m=3

=>m=3/11

3:

H(-1)=0

=>-2-m-7m+3=0

=>-8m=-1

=>m=1/8

5: g(1)=h(-2)

=>1-2(m+1)-5m+1=-8-2m-7m+3

=>-5m+2-2m-2=-9m-5

=>-7m=-9m-5

=>2m=-5

=>m=-5/2

28 tháng 7 2023

a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)

Để đa thức f(x) có nghiệm là -1 khi:

\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)

\(\Rightarrow1+m-1+3m-2=0\)

\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)

b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)

Để đa thức g(x) có nghiệm là 2 khi:

\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)

\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)

\(\Rightarrow4-4m-1-5m+1=0\)

\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)

c) \(h\left(x\right)=-2x^2+mx-7m+3\)

Để đa thức h(x) có nghiệm là -1 khi:

\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)

\(\Rightarrow-2-m-7m+3=0\)

\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)

d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi

\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)

\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)

\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)

-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi

\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)

\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)

\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)