Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-x2+x-1=0
=>(x3-x2)+(x-1)=0
=>x2(x-1)+(x-1)=0
(x-1)(x2+1)=0
Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )
=>x-1=0
x=1
Vậy x=1 là nghiệm của f(x)
b)11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0
(x+1)[10(x2-x+1)+x2+4x]=0
(x+1)(11x2-6x+10)=0
(x+1)[(9x2-2.3x+1)+9]=0
(x+1)[(3x-1)2+2x2+9]=0
=>x+1=0
x=-1
Vậy -1 là nghiệm của y(x)
c)-17x3+8x2-3x+12=0
\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)
=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)
= \(x^2-2x+1\)
a) Ta có: \(x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức f(x)
b, c: @Ace Legona
a)\(f\left(x\right)=x^3-x^2+x-1\)
Cho \(f\left(x\right)=0\Rightarrow x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2+1\right)=0\)
Dễ thấy: \(x^2+1\ge1>0\forall x\) ( vô nghiệm )
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(g\left(x\right)=11x^3+5x^2+4x+10\)
Cho \(g\left(x\right)=0\Rightarrow11x^3+5x^2+4x+10=0\)
\(\Rightarrow11x^3-6x^2+10x+11x^2-6x+10=0\)
\(\Rightarrow x\left(11x^2-6x+10\right)+\left(11x^2-6x+10\right)=0\)
\(\Rightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
Dễ thấy:
\(11x^2-6x+10=11\left(x-\dfrac{3}{11}\right)^2+\dfrac{101}{11}\ge\dfrac{101}{11}>0\forall x\) (vô nghiệm)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
c)\(h\left(x\right)=-17x^3+8x^2-3x+12\)
Cho \(h\left(x\right)=0\Rightarrow-17x^3+8x^2-3x+12=0\)
\(\Rightarrow17x^2+9x+12-17x^3-9x^2-12x=0\)
\(\Rightarrow\left(17x^2+9x+12\right)-x\left(17x^2+9x+12\right)=0\)
\(\Rightarrow\left(1-x\right)\left(17x^2+9x+12\right)=0\)
Dễ thấy:
\(17x^2+9x+12=17\left(x+\dfrac{9}{34}\right)^2+\dfrac{735}{68}\ge\dfrac{735}{68}>0\forall x\)(vô nghiệm)
\(\Rightarrow1-x=0\Rightarrow x=1\)
1, \(x^2-4x-4x+16=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy.............
2, \(x^2+3x-5x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy...............
3, \(x^2-6x+8=0\)
\(\Leftrightarrow x^2-6x+9-1=0\)
\(\Leftrightarrow\left(x-3\right)^2-1=0\)
\(\Leftrightarrow\left(x-3\right)^3=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy......................
4, \(x^2+8x+12=0\)
\(\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-4=0\)
\(\Leftrightarrow\left(x+4\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
Vậy............
Dài đấy :))
a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)
\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)
\(\Leftrightarrow\left|x-1\right|+8=9\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)
c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))
\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)
\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)
\(\Leftrightarrow\left(x-5\right)^2=36\)
\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)
d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)
\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)
\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)
\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)
Vậy ta xét hai trường hợp sau :
1. \(x\ge-\frac{3}{16}\)
(*) <=>\(7x-2=4x+\frac{3}{4}\)
\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)
\(\Leftrightarrow3x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)
2. \(x< -\frac{3}{16}\)
(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)
\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)
\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)
\(\Leftrightarrow11x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)
Vậy x = 11/12
e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)
\(\Leftrightarrow x+1=4040\)
\(\Leftrightarrow x=4039\)
Sắp xếp A(x)=\(2x^5+x^3+x^2-7x-9\)
B(x)=\(x^4+4x^3+4x^2+5x+11\)
b,M(x)= \(2x^5+x^4+5x^3+5x^2-2x+2\)
N(x)=\(2x^5-x^4-3x^3-3x^2-12x-20\)
c, Thay x=2 vào N(x) ta được
N(2)=0 Vậy 2 là nghiệm của đt N(x)
Thay x=2 vào M(x) ta được
M(2)=.... \(\ne\)0(tự tính nha)
Vậy.............
\(H\left(x\right)=9x^4-3x^3-11x^2-7x+12\)
\(K\left(x\right)=-8x^4+10x^3+4x^2-7x-12\)
\(A\left(x\right)=H\left(x\right)-K\left(x\right)\)
\(=17x^4-10x^3-15x^2+24\)
Để \(A\left(x\right)=x^4-13x^3-14x^2\) nên \(17x^4-10x^3-15x^2+24=x^4-13x^3-14x^2\)
\(\Leftrightarrow16x^4+3x^3-x^2+24=0\)
Đến đây mình bí rồi, xin lỗi bạn!
Bài làm:
a) \(x^2+4x+12=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)+8=0\)
\(\Leftrightarrow\left(x+2\right)^2=-8\left(sai\right)\)
=> Vô nghiệm
b) \(x^2+6x+10=0\)
\(\Leftrightarrow\left(x^2+6x+9\right)+1=0\)
\(\Leftrightarrow\left(x+3\right)^2=-1\left(sai\right)\)
=> Vô nghiệm
c) \(x^2+8x+27=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+11=0\)
\(\Leftrightarrow\left(x+4\right)^2=-11\left(sai\right)\)
=> Vô nghiệm
Học tốt!!!!