\(3^{2n-1}+2.9^{n-1}=135\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

\(3^{2n-1}+2.9^{n-1}=135\)

\(\Leftrightarrow3^{2n-1}+2.\left(3^2\right)^{n-1}=135\)

\(\Leftrightarrow3^{2n-1}+2.3^{2n-2}=135\)

\(\Leftrightarrow3^{2n-1}+2.3^{2n-1}.\frac{1}{3}=135\)

\(\Leftrightarrow3^{2n-1}.\left(1+2.\frac{1}{3}\right)=135\)

\(\Leftrightarrow3^{2n-1}.\frac{5}{3}=135\)

\(\Leftrightarrow3^{2n-1}=135:\frac{5}{3}=81\)

\(\Leftrightarrow3^{2n-1}=3^4\Leftrightarrow2n-1=4\)

\(\Leftrightarrow2n=5\Rightarrow n=\frac{5}{2}\)

Vậy \(n=\frac{5}{2}\).

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....

a) -3 \(⋮\)3n+1

=> 3n+1 \(\in\)Ư(-3)

=> 3n+1 \(\in\){-1;1;3;-3}

Ta co bang:

3n+1-3-113
n-4/3-2/302/3
 loạiloạichọnloại

KL

b) 8\(⋮\)2n+1

=> 2n+1\(\in\) Ư{8}

=>2n+1 \(\in\){-1;1;4;2;8;-2;-4;-8}

vì 2n là số chẵn => 2n+1 là số lẻ

=> 2n+1\(\in\){-1;1}

2n+1-11
n-10
 chọnchọn

c)n+1 \(⋮\)n-2

=> n-2 +3 \(⋮\)n-2

Vì n-2\(⋮\)n-2 mà n-2+3\(⋮\)n-2

=>3\(⋮\)n-2

=>n-2\(\in\)  Ư{3}

=>n-2\(\in\){-1;-3;1;3}

n-2-11-33
n13-15
 chọn chọnchọnchọn

d)3n+2 \(⋮\)n-1

=>3(n-1)+5 \(⋮\)n-1

Vì 3(n-1)\(⋮\)n-1 mà 3(n-1)+5\(⋮\)n-1

=>5\(⋮\)n-1

=>n-1\(\in\)Ư{5}

=>n-1\(\in\){-5;-1;1;5}

n-1-5-115
n-4026
 chọn chọnchọnchọn

e)3-n:2n+1

=> 2(3-n)\(⋮\)2n+1

=>6-2n\(⋮\)2n+1

=>7-(2n+1)\(⋮\)2n+1

Vì -(2n+1)\(⋮\)2n+1 mà 7 -(2n+1) \(⋮\)2n+1

=>2n+1 \(\in\)Ư{7}

=>2n+1\(\in\){-7;-1;1;7}

2n+1-7-117
n-4-10

3

 chọnchọnchọnchọn

a) => n-1+3 chia hết n-1

Mà n-1 chia hết n-1

=> 3 chia hết cho n-1

=> n-1 thuộc Ước của 3

........

b)=> 2(n+1) +5 chia hết n+1

mà 2(n+1) chia hết n+1

=> 5 chia hết cho n+1

=> n+1 thuộc ước của 5

.......

3 tháng 3 2020

a,Ta có :\(n+2⋮n-1\)

\(=>n-1+3⋮n-1\)

Do \(n-1⋮n-1\)

\(=>3⋮n-1\)

\(=>n-1\inƯ\left(3\right)\)

\(=>n-1\in\left\{-3;-1;1;3\right\}\)

\(=>n\in\left\{-2;0;2;4\right\}\)

b,\(2n+7⋮n+1\)

\(=>2.\left(n+1\right)+5⋮n+1\)

Do \(2.\left(n+1\right)⋮n+1\)

\(=>5⋮n+1\)

\(=>n+1\inƯ\left(5\right)\)

\(=>n+1\in\left\{-5;-1;1;5\right\}\)

\(=>n\in\left\{-6;-2;0;4\right\}\)

18 tháng 2 2017

Gọi UC(2n + 1, n + 2) là d

ta có

2n + 1 và n + 2 chia hết cho d

ta có: n + 2 - 2n + 1 => 2n + 4 - 2n + 1 = 3

=> d = {-3; -1; 3; 1}

\(a,n+9⋮n+2\)

\(\Rightarrow n+2+7⋮n+2\)

mà \(n+2⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(n\in\left\{-1;-3;5;-9\right\}\)

\(b,2n+7⋮n+1\)

\(\Rightarrow2n+2+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

27 tháng 10 2016

1 ) 10 \(⋮\) n

=> n \(\in\) Ư ( 10 )

Ư ( 10 ) = { 1 , 2 , 5 , 10 }

Vậy n \(\in\) { 1 ; 2 ; 5 ; 10 }

2 ) 12 : \(⋮\) ( n - 1 )

=> n - 1 \(\in\) Ư ( 12 )

=> Ư ( 12 ) = { 1 ; 12 ; 2 ; 6 ; 3 ; 4 }

n - 11122634
n2133745

 

Vậy n \(\in\) { 2 , 13 , 3 , 7 , 4 , 5 }

3 ) 20 \(⋮\) ( 2n + 1 )

=> 2n + 1 \(\in\) Ư ( 20 )

=> Ư ( 20 ) = { 1 ; 20 ; 2 ; 10 ; 4 ; 5 }

2n+112021045
n019/2 ( loại )1/2 ( loại )9/2 ( loại )3/2 ( loại )2

 

Các trường hợp loại , vì n \(\in\) N

Vậy n thuộc { 0 , 2 }

 

15 tháng 2 2017

a) \(\frac{2\left(n+1\right)-1}{n+1}=\frac{2\left(n+1\right)}{n+1}-\frac{1}{n+1}\)

                                \(=2-\frac{1}{n+1}\)

=> \(1⋮n+1\)

Ta có bảng sau: