K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+)Gọi d là ước chung nguyên tố của n+9;n+3

=>n+9\(⋮\)d;n+3\(⋮\)d

=>(n+9)-(n+3)\(⋮\)d

=>n+9-n-3\(⋮\)d

=>6\(⋮\)d

=>d\(\in\)\(\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Mà d nguyên tố

=>d\(\in\left\{2;3\right\}\)

Xét d=2

=>n+9\(⋮\)2

=>n+9=2k

=>n=2k-9=2k-(8+1)=2.(k-4)-1

=>n=2.(k-4)-1 thì \(\frac{n+9}{n+3}\)tối giản

Xét d=3

=>n+3\(⋮\)3

=>n\(⋮\)3(vì 3\(⋮\)3)

=>n=3k

=>n\(\ne\)3k thì \(\frac{n+9}{n+3}\) tối giản

Chúc bn học tốt

27 tháng 2 2020

Để phân số n+9/n+3 tối giản thì (n+9;n+3)=1 

Gỉa sử 

n+9 chia hết cho d và n+3 chia hết cho d => n+9-(n+3) = 6 chia hết cho d 

=>d thuộc {2,3}

Điều kiện để (n+9;n+3) = 1 là d khác 2 và 3 

d khác 2 <=> n+9 và n+3 lẻ <=>n chẵn (1)

d khác 3 <=> n+9 và n+3 không chia hết cho 3 <=> n khác B(3)(2)

Từ (1) và (2) => (n+9;n+3)= 1 khi n chẵn và khác B(3)

Vậy n+9/n+3 tối giản khi n chẵn và khác B(3)

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

28 tháng 4 2016

Gọi d là ƯC(n+1 ; n+2)

=> n+1 chia hết cho d  và n+2 chia hết cho d

=>(n+2)-(n+1) chia hết d

=> 1 chia hết d

=> D=1

Vậy n+1/n+2 là phân số tối giản

28 tháng 4 2016

Để n+3/n-2 \(\in\) Z

=> n+3 chia hết n-2

=> n-2 + 5 chia hết n-2

=> 5 chia hết n-2

=> n-2 \(\in\) Ư(5)={-1;1;-5;5}

Ta có: 

n-2-11-55
n13-37
11 tháng 3 2017

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...

6 tháng 2 2018

Bài 1:

Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)

Khi đó ta có:

a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản  (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản   (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)