Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3n+7}{3n-1}\inℕ^∗\)thì \(3n+7⋮3n-1\)
\(\Leftrightarrow3n-1+8⋮3n-1\Leftrightarrow8⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
3n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
3n | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
n | 2/3 ktm | 0 | 1 | -1/3 ktm | 5/3 ktm | -1 | 3 | -7/3 ktm |
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng
n - 2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)
\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng
n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -2 | 10 | -12 |
d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên
<=> \(3n+7⋮2n+3\)
<=> 2(3n + 7) \(⋮\) 2n + 3
<=> 6n + 14 \(⋮\)2n + 3
<=> 3(2n + 3) + 5 \(⋮\)2n + 3
<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)
<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
2n + 3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy ....
1, để B nguyên
=> n + 7 ⋮ 3n - 1
=> 3n + 21 ⋮ 3n - 1
=> 3n - 1 + 22 ⋮ 3n - 1
=> 22 ⋮ 3n - 1
2, tương tự thôi bạn
a)Có\(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
Để \(3+\frac{21}{n-4}\)\(\in z\) mà \(3\in z\Rightarrow\frac{21}{n-4}\in z\)
\(\Rightarrow\)n-4 \(\in\)Ư(21)={-1;1;-3;3;-7;7;-21;21}
ta có bảng sau:
n - 4 | -1 | 1 | -3 | 3 | -7 | 7 | -21 | 21 |
n | 3 | 5 | 1 | 7 | -3 | 11 | -17 | 26 |
Vậy,n\(\in\){-17;-3;1;3;5;7;11;26}
b)có:\(\frac{6n+5}{2n-4}=\frac{6n-12+17}{2n-4}=\frac{3\left(2n-4\right)+17}{2n-4}=3+\frac{17}{2n-4}\)
Để \(3+\frac{17}{2n-4}\)\(\in z\) mà \(3\in z\Rightarrow\frac{17}{2n-4}\in z\)
\(\Rightarrow\)2n-4 \(\in\)Ư(17)={-1;1;-17;17}
ta có bảng sau:
2n-4 | -1 | 1 | -17 | 17 |
n | 1,5 | 2,5 | -6,5 | 10,5 |
theo bảng trên không có giá trị n thỏa mãn ĐK n\(\in z\)
Vậy, không có giá trị nguyên n nào để \(\frac{6n+5}{2n-4}\in z\)
Cho biểu thức A=\(\frac{2n-1}{3-n}\)tìm giá trị nguyên của n để A là 1 số nguyên
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
đề bài là 30n+1 thì mới làm được nếu là 30n+1 thì làm như sau
gọi d thuộc ước chung của 15n+1 và 30n+1
suy ra 15n+1 chia hết cho d
30n+1 chia hết cho d
vậy 2.(15n+1) chia hết cho d
30n+1 chia hết cho d
suy ra 30n+2 chia hết cho d
30n+1 chia hết cho d
vậy(30n+2)-(30n+1) chi hết cho d
1 chia hết cho d
vậy d thuộc tập hợp 1 và -1
c/m 15n+1/30n+1 là phân số tối giản
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a.\(\frac{3.\left(n-12\right)+42}{3n-12}=3+\frac{42}{3n-12}\)
Vì 3 là số nguyên => \(\frac{42}{3n-12}\)cũng là số nguyên
=> 3n-12 là ước của 42 mà Ư(42)=1;2;3;6;7;42;-1;-2;-3;-6;-7;-42
Vì n là số nguyên
=> \(n\in\)( 5;6;18;3;2;-10)
b. \(\frac{3\left(n+7\right)-16}{n+7}=3-\frac{16}{n+7}\)
Vì 3 là số nguyên => \(\frac{16}{n+7}\)cũng là số nguyên
=> n+7 là ước của 16 mà Ư(16)=1;2;4;16;-1;-2;-4;-16
=>\(n\in\)(-6;-5;-3;9;-8;-9;-11;-23)