Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:n+3=n-1+4
Để n+3 chia hết cho n-1 thì 4 chia hết cho n-1
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Rightarrow n\in\left\{-3,-1,0,2,3,5\right\}\)Vì n là số tự nhiên nên \(n\in\left\{0,2,3,5\right\}\) thỏa mãn
Câu b tương tự
Trong 2 số n và 7n + 1 luôn có một số và chỉ một số là số chẵn \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮2\)
Số tự nhiên n có một trong 3 dạng: 3k, 3k + 1, 3k + 2
+ Nếu n = 3k thì \(n\left(2n+7\right)\left(7n+1\right)⋮3\)
+ Nếu n = 3k + 1 thì 2n + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)
+ Nếu n = 3k + 2 thì 7n + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)
Vì \(n\left(2n+7\right)\left(7n+1\right)⋮2;3\) nên \(n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
2n3 + n2 + 7n + 1 chia hết cho 2n - 1
2n3 - n2 + 2n2 + 7n + 1 chia hết cho 2n - 1
n2.(2n - 1) + 2n2 + 7n + 1 chia hết cho 2n - 1
=> 2n2 + 7n + 1 chia hết cho 2n - 1
2n2 - n + 8n + 1 chia hết ch 2n - 1
n(2n - 1) + 8n + 1 chia hết cho 2n - 1
8n + 1 chia hết cho 2n - 1
8n - 4 + 5 chia hết cho 2n - 1
4.(2n - 1) + 5 chia hết cho 2n - 1
=> 5 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(5) = {1 ; -1; 5; -5}
Ta có bảng sau :
2n - 1 | 1 | -1 | 5 | -5 |
n | 1 | 0 | 3 | -2 |
Đặt A=n^2+7n+22
Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3
=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3
Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1
Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm
\(2n^2+7n-2=\left(2n-1\right)\left(n+4\right)+2\)(dùng chia đa thức)
Ta thấy \(\left(2n-1\right)\left(n+4\right)\) chia hết cho 2n - 1
\(\Rightarrow2n^2+7n-2\) chia hết cho 2n -1 khia 2 chia hết cho 2n -1 hay 2n - 1 là ước của 2
=> 2n - 1 = {-2; -1; 1; 2} => n = {-1/2; 0; 1; 3/2}
Do n thuộc Z => n = {0; 1}
toán lớp 6 phải ko mình chưa học lp 6 sorry