K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

\(2n^2+7n-2=\left(2n-1\right)\left(n+4\right)+2\)(dùng chia đa thức)

Ta thấy \(\left(2n-1\right)\left(n+4\right)\) chia hết cho 2n - 1

\(\Rightarrow2n^2+7n-2\) chia hết cho 2n -1 khia 2 chia hết cho 2n -1 hay 2n - 1 là ước của 2

=> 2n - 1 = {-2; -1; 1; 2} => n = {-1/2; 0; 1; 3/2}

Do n thuộc Z => n = {0; 1}

20 tháng 5 2017

toán lớp 6 phải ko mình chưa học lp 6 sorry
 

31 tháng 12 2015

lớp 9 ngược à bạn 

31 tháng 12 2015

chắc vậy kẻ giấu tên

20 tháng 12 2017

Ta có:n+3=n-1+4

Để n+3 chia hết cho n-1 thì 4 chia hết cho n-1

\(\Rightarrow n-1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Rightarrow n\in\left\{-3,-1,0,2,3,5\right\}\)Vì n là số tự nhiên nên \(n\in\left\{0,2,3,5\right\}\) thỏa mãn

Câu b tương tự

20 tháng 12 2017

giup mình

30 tháng 10 2022

ko bt lm

 

14 tháng 4 2018

n = -2;0;2;4 nha bạn 

14 tháng 4 2018

giải thích ra chứ

27 tháng 6 2018

Trong 2 số n và 7n + 1 luôn có một số và chỉ một số là số chẵn \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮2\)

Số tự nhiên n có một trong 3 dạng: 3k, 3k + 1, 3k + 2

+ Nếu n = 3k thì \(n\left(2n+7\right)\left(7n+1\right)⋮3\)

+ Nếu n = 3k + 1 thì 2n + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)

+ Nếu n = 3k + 2 thì 7n + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)

\(n\left(2n+7\right)\left(7n+1\right)⋮2;3\) nên \(n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

27 tháng 6 2018

Cmtt

n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

14 tháng 6 2017

2n3 + n2 + 7n + 1 chia hết cho 2n - 1

2n3 - n2 + 2n2 + 7n + 1 chia hết cho 2n - 1

n2.(2n - 1) + 2n2 + 7n + 1 chia hết cho 2n - 1

=> 2n2 + 7n + 1 chia hết cho 2n - 1

2n2 - n + 8n + 1 chia hết ch 2n - 1

n(2n - 1) + 8n + 1 chia hết cho 2n - 1

8n + 1 chia hết cho 2n - 1

8n - 4 + 5 chia hết cho 2n - 1

4.(2n - 1) + 5 chia hết cho 2n - 1

=> 5 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư(5) = {1 ; -1; 5; -5}

Ta có bảng sau :

2n - 11-15-5
n103-2
15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>

24 tháng 12 2016

Đặt A=n^2+7n+22

Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3 

=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3

Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1

Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm