K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

a) \(\left(n-7\right)⋮\left(n+2\right)\)

\(\left[\left(n+2\right)-9\right]⋮\left(n+2\right)\)

\(9⋮\left(n+2\right)\)

=>\(n\in\left\{-11;-5;-3;-1;1;7\right\}\)

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

2 tháng 2 2019

\(a)n+7⋮n+2\)

\(\Rightarrow n+2+5⋮n+2\)

Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)

Lập bảng :

n + 21-15-5
n-1-33-7

Vậy : ...

1 tháng 12 2017

2.a)n^5+1⋮n^3+1

⇒n^2.(n^3+1)-n^2+1⋮n^3+1

⇒1⋮n^3+1

⇒n^3+1ϵƯ(1)={1}

ta có :n^3+1=1

n^3=0

n=0

Vậy n=0

b)n^5+1⋮n^3+1

Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0

Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá